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Gaussian ansatz for likelihood
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Covariance, precision and model

Reasons for using SBI:
1. Likelihood  is non-Gaussian,


2. Model  is a complex non-linear function of ,


3. Statistic is inaccurately predicted in simulations,


4. Modelling covariance  dependence on .

p( ̂ξ |ξ[π])

ξ[π] π

Σ[π] π



Covariance matrix estimation
Building an accurate Gaussian likelihood



̂π[ ̂ξi, Σ̂]
̂π[ ̂ξ, Σ̂]

(Figure from Friedrich & Eifler 2017)Problem of not knowing Σ

Problem: Noise in  scatters best-fit . Not accounted for in Gaussian ansatz.Σ̂ = S ≠ Σ ̂π

 scatter of  !∼ 5σ ̂π
 scatter of  !∼ 2σ ̂π

Σ̂ = Σ
Σ̂ = S

True posterior
SH16
SH16 + DS13
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(Figure from Friedrich & Eifler 2017)Problem of not knowing Σ

Problem: Noise in  scatters best-fit . Not accounted for in Gaussian ansatz.Σ̂ = S ≠ Σ ̂π

 scatter of  !∼ 5σ ̂π
 scatter of  !∼ 2σ ̂π

F−1
Σ̂−1 ≈ [1 +

nξ − nπ

ns − nξ ]F−1
Σ

(ns ≫ nξ ≫ nπ)

The Dodelson-Schneider Correction 

 Correct posterior for noise in location  of likelihood contours from 
→

̂π Σ̂ = S

Dodelson & Schneider 2013



• Corrected coverage + accounting for unknown  Σ
 larger widths⟹

Percival++21

The Bayesian approach...

Examples:     homerjed/frequentist_matching_priors

Example posterior
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P++21



Example posterior

σ8

Ωm

 knownΣ
SH16, Hartlap
P++21

• Corrected coverage + accounting for unknown  Σ
 larger widths⟹

Percival++21

The Bayesian approach...

Examples:     homerjed/frequentist_matching_priors

This is the solution a machine is aiming for!



Questions about SBI
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Questions about SBI
Are the posteriors inflated w.r.t. a Gaussian 

likelihood analysis for the same ?ns

Does SBI adjust the posterior width to fix its 
coverage, given effects of  on  the 

likelihood function?
Σ̂ ≠ Σ

Which posterior will SBI obtain on average?

...in SBI we fit covariance, model and likelihood shape!



Challenging SBI
Testing likelihoods built by machines



̂ξ ∼ 𝒢[ ̂ξ |ξ[π], Σ]π
Measure Infer

An experiment with SBI

̂π = f( ̂ξ)
Compress

•   linearised model for DES-Y3 shear 2pt functions.̂ξ ←

π
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̂ξ ∼ 𝒢[ ̂ξ |ξ[π], Σ]π
Measure Infer

An experiment with SBI

̂π = f( ̂ξ)
Compress π
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π2

π1

pϕ(ξ |π)

̂π = M ̂ξ ̂π = fψ(ξ)
Linear compression Neural network compression

Σ̂
2 × ns

Σ
2 × ns ns

• Need  or  to parameterise our optimal compression
Σ Σ̂

• Why not just use a neural network? It doesn't invert ?Σ̂

• Compression doesn't simply "remove the noise"!

• Why not field-level, which doesn't use compression?

Questions...



Spoiler (in one universe): 

SBI is aware of the Dodelson-Schneider effect but it is inefficient in its response!



• Does SBI recover the errors it should?

SBI posterior widths

σ2[π]

ns



SBI posterior coverage 

• Does SBI assign correct probability to posterior credible intervals? 

Σ̂ = S Σ̂ = Σ



SBI posterior coverage 

• Does SBI assign correct probability to posterior credible intervals? 

Σ̂ = S Σ̂ = Σ

So what is SBI doing?
• Coverages are corrected ✔

• Widths are inflated ✔ 

• for low  there is additional posterior inflation! ns

 SBI 'knows' about the Dodelson-Schneider effect and corrects for it
→



Insights
1. SBI with...


• optimal , true , Gaussian ,


• cutting-edge density estimation techniques,


...cannot  

obtain diluted parameter constraints given  

• the same number of simulations  , a modest  and  ,


• no avoiding the issues of covariance estimation, 

• but SBI does what it says it does!

̂π ξ[π] p( ̂ξ |ξ[π])

ns nξ nπ

FM-priors (Percival++21), PME (Friedrich+17)

...obtains diluted parameter constraints compared to  

• a Gaussian likelihood analysis, 

• and the same number of simulations  , a modest  and  , 

• but SBI does what it says it does!

ns nξ nπ



Insights

2. Given what is required for analyses of LSS statistics...


• worse when you don't know how to summarise your data optimally,


• your covariance  has strong non-diagonal structure (+ an NN for 
compression),


• there are many nuisance parameters,


• and your model  is complex and non-linear, for a non-Gaussian 
statistic. 

Σ

ξ[π]
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Thank you

🌐 homerjed.github.io

mailto:jed.homer@physik.lmu.de
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✉ jed.homer@physik.lmu.de

> pip install sbiax

> cd examples/

        homerjed/sbiax

🌐 homerjed.github.io

mailto:jed.homer@physik.lmu.de


Where does NN compression fail?

(Σr)ij =

Σij, if i = j

r ΣiiΣjj, if off-diagonal

0, else

Σr , (r = 0.2)

 Test a change to the covariance structure  → Σ → Σr



Where does NN compression fail?

• NN fails to summarise when data covariance has large off-diagonal elements!

ns

σ2[π]



Where does NN compression fail?

• NN fails to summarise when data has a covariance with large off-diagonal elements!
ns

σ2
π

(Σr)ij = r ΣiiΣjj

 for matter PDF + , 3 scales, redshift 
zero (Uhlemann++2019).

Σ P(k) for weak lensing peaks (Davies++2021).Σ

Unfavourable 's are easy to find in cosmology!Σ
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Future: much ado about neural networks

• How does  from a neural network scatter on average for low ?


• calculation of summary scatter for non-linear model,


• optimisation has a regularising effect. 

̂π[ ̂ξ] ns

̂π[ξ] = v + M ⋅ ξ +
1
2
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Future: interpretable likelihoods from machines 

• Current density estimation methods are not 
interpretable 

• What is the difference between  and 
a Gaussian linear model?


• Can we fit a model for  and ?


• Solution may not lay in the machine learning 
literature... yet 

• 10 years of flows, 


• diffusion, FM, ... poorer density estimation.

pϕ(ξ |π)

ξ[π] p( ̂ξ |ξ[π])

π

ξ[π] , ̂ξ

π0

Linearised ξ[π]
Non-linear ξ[π]


