SBI has its own Dodelson-Schneider effect (but it knows that it does)

- Jed Homer, Oliver Friedrich & Daniel Gruen
 - X 2412.02311
 - **MPA Cosmology 11/02/25**

Hello

Bayesian inference in cosmology with generative models

Deep generative priors with JAX-NIFTy (

Generative diffusion processes: () homerjed/sbgm

Astrophysics, Cosmology and AI (ACAI, LMU)

Jed Homer (USM, LMU)

Daniel Gruen (USM, LMU)

Oliver Friedrich (USM, LMU)

Flow-matching baryonification: O homerjed/rf

$$= 2.0(x)$$

Reasons for using SBI:

- 1. Likelihood $p(\hat{\xi} | \xi[\pi])$ is non-Gaussian,
- 2. Model $\xi[\pi]$ is a complex non-linear function of π ,
- 3. Statistic is inaccurately predicted in simulations,
- 4. Modelling covariance $\Sigma[\pi]$ dependence on π .

Posterior \propto Likelihood \times Prior

Covariance, precision and model

Covariance matrix estimation

Building an accurate Gaussian likelihood

Problem of not knowing Σ

(Figure from Friedrich & Eifler 2017)

Problem of not knowing Σ

(Figure from Friedrich & Eifler 2017)

Dodelson & Schneider 2013

Problem: Noise in $\hat{\Sigma} = S \neq \Sigma$ scatters best-fit $\hat{\pi}$. Not accounted for in Gaussian ansatz.

The Bayesian approach...

Example posterior

Ω_m

• Corrected coverage + accounting for unknown Σ \implies larger widths

Percival++21

Examples: O homerjed/frequentist_matching_priors

The Bayesian approach...

This is the solution a machine is aiming for!

Ω_m

• Corrected coverage + accounting for unknown Σ \implies larger widths

Percival++21

Examples: O homerjed/frequentist_matching_priors

 σ_8

 Ω_m

 Ω_m

Are the posteriors inflated w.r.t. a Gaussian likelihood analysis for the same n_s ?

 Ω_m

Are the posteriors inflated w.r.t. a Gaussian likelihood analysis for the same n_s ?

Are the posteriors inflated w.r.t. a Gaussian likelihood analysis for the same n_{c} ?

Challenging SBI

Testing likelihoods built by machines

An experiment with SBI

• $\hat{\xi} \leftarrow$ linearised model for <u>DES-Y3 shear 2pt functions</u>.

$$\begin{split} \pi \to \hat{\xi} \sim \mathscr{G}[\hat{\xi} | \xi[\pi], \Sigma] \to \hat{\pi} = f(\hat{\xi}) \to p_{\phi}(\xi | \pi) \to \end{split} \\ & \text{Measure} \qquad \text{Compress} \qquad \text{Infer} \end{split}$$

An experiment with SBI

$$\hat{\pi} = f_{\psi}(\xi)$$

$$2 \times n_s$$

Spoiler (in one universe):

Gaussian likelihood analysis

SBI is *aware* of the Dodelson-Schneider effect but it is *inefficient* in its response!

Simulation-based inference

SBI posterior widths

Marginal variances of SBI posteriors (NLE, MAF)

• Does SBI recover the errors it should?

SBI posterior coverage

Does SBI assign correct probability to posterior credible intervals?

SBI posterior coverage So what is SBI doing? Coverages are corrected \checkmark Widths are inflated \checkmark for low n_s there is additional posterior inflation! → SBI 'knows' about the Dodelson-Schneider effect and corrects for it

Does SBI assign correct probability to posterior credible intervals: \bullet

Insights

- 1. SBI with...
 - optimal $\hat{\pi}$, true $\xi[\pi]$, Gaussian $p(\hat{\xi} | \xi[\pi])$,
 - cutting-edge density estimation techniques,

...obtains diluted parameter constraints compared to

- a Gaussian likelihood analysis,
- and the same number of simulations n_s , a modest n_{ε} and n_{π} ,
- but SBI does what it says it does!

FM-priors (Percival++21), PME (Friedrich+17)

Insights

2. Given what is **required for analyses of LSS statistics...**

- your covariance Σ has strong non-diagonal structure (+ an NN for compression),
- there are many nuisance parameters,
- statistic.

worse when you don't know how to summarise your data optimally,

• and your model $\xi[\pi]$ is complex and non-linear, for a non-Gaussian

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Thank you

Munich Center for Machine Learning

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

sbiax

Fast, lightweight and parallel simulation-based inference.

X 2412.02311

Munich Center for Machine Learning

() homerjed/sbiax

> pip install sbiax > cd examples/

jed.homer@physik.lmu.de

Where does NN compression fail?

 \rightarrow Test a change to the covariance structure $\Sigma \rightarrow \Sigma_r$

Where does NN compression fail?

NN fails to summarise when data covariance has large off-diagonal elements!

Unfavourable Σ 's are easy to find in cosmology!

 Σ for matter PDF + P(k), 3 scales, redshift zero (Uhlemann++2019).

 $n_s = 1000$ $n_s = 1000 \times 2$

Future: much ado about neural networks

- - calculation of summary scatter for non-linear model,
 - optimisation has a regularising effect.

• How does $\hat{\pi}[\hat{\xi}]$ from a neural network scatter on average for low n_s ?

Future: interpretable likelihoods from machines

- Current density estimation methods are not interpretable
 - What is the difference between $p_{\phi}(\xi \,|\, \pi)$ and a Gaussian linear model?
 - Can we fit a model for $\xi[\pi]$ and $p(\hat{\xi} | \xi[\pi])$?

- Solution may *not* lay in the machine learning literature... yet
 - 10 years of flows,
 - diffusion, FM, ... poorer density estimation.

