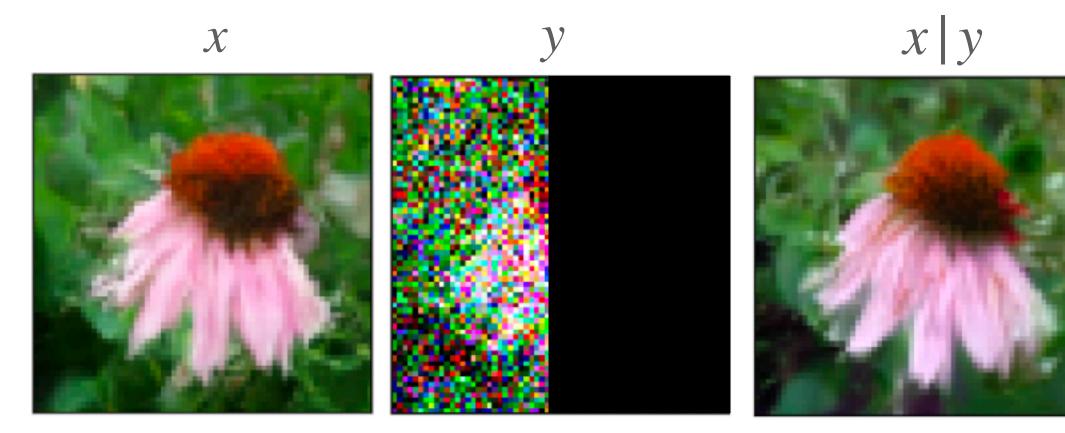
SBI has its own Dodelson-Schneider effect (but it knows that it does)

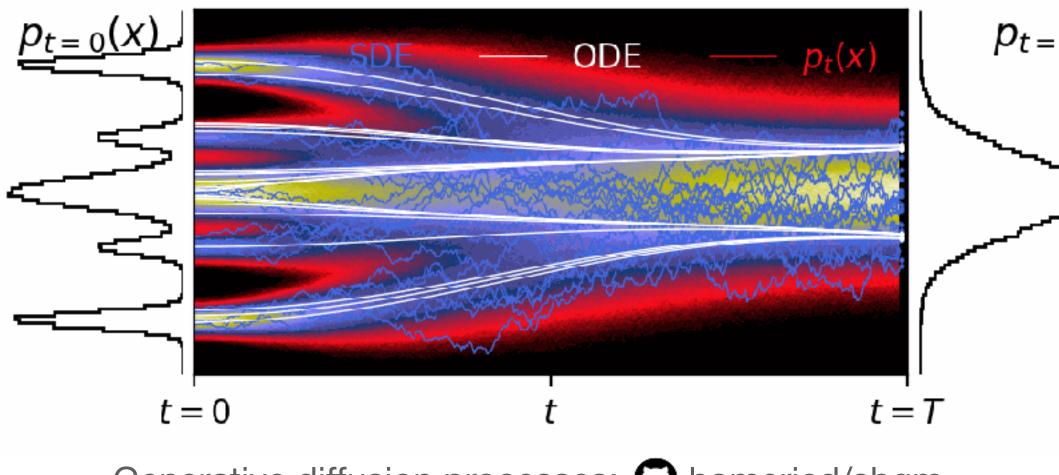
- Jed Homer, Oliver Friedrich & Daniel Gruen
 - X 2412.02311
 - **ODSL AI4Science 14/02/25**

Hello!

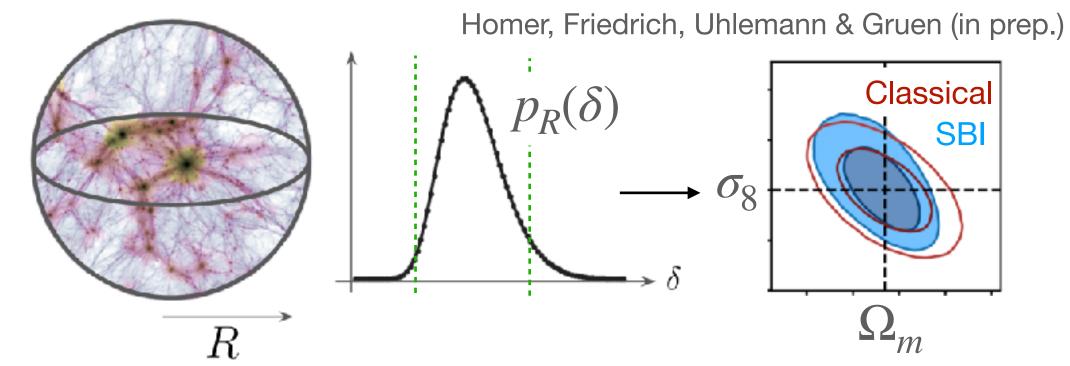
Bayesian inference in cosmology with generative models



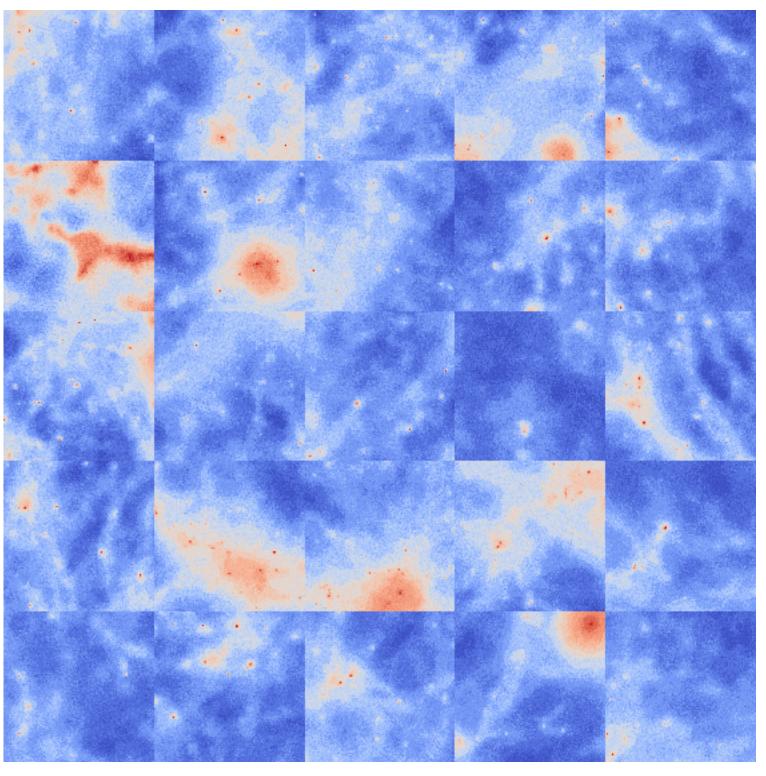
Deep generative signal priors with JAX-NIFTy (



Generative diffusion processes: () homerjed/sbgm



Unlocking information content of the 1pt PDF with SBI () homerjed/sbiax

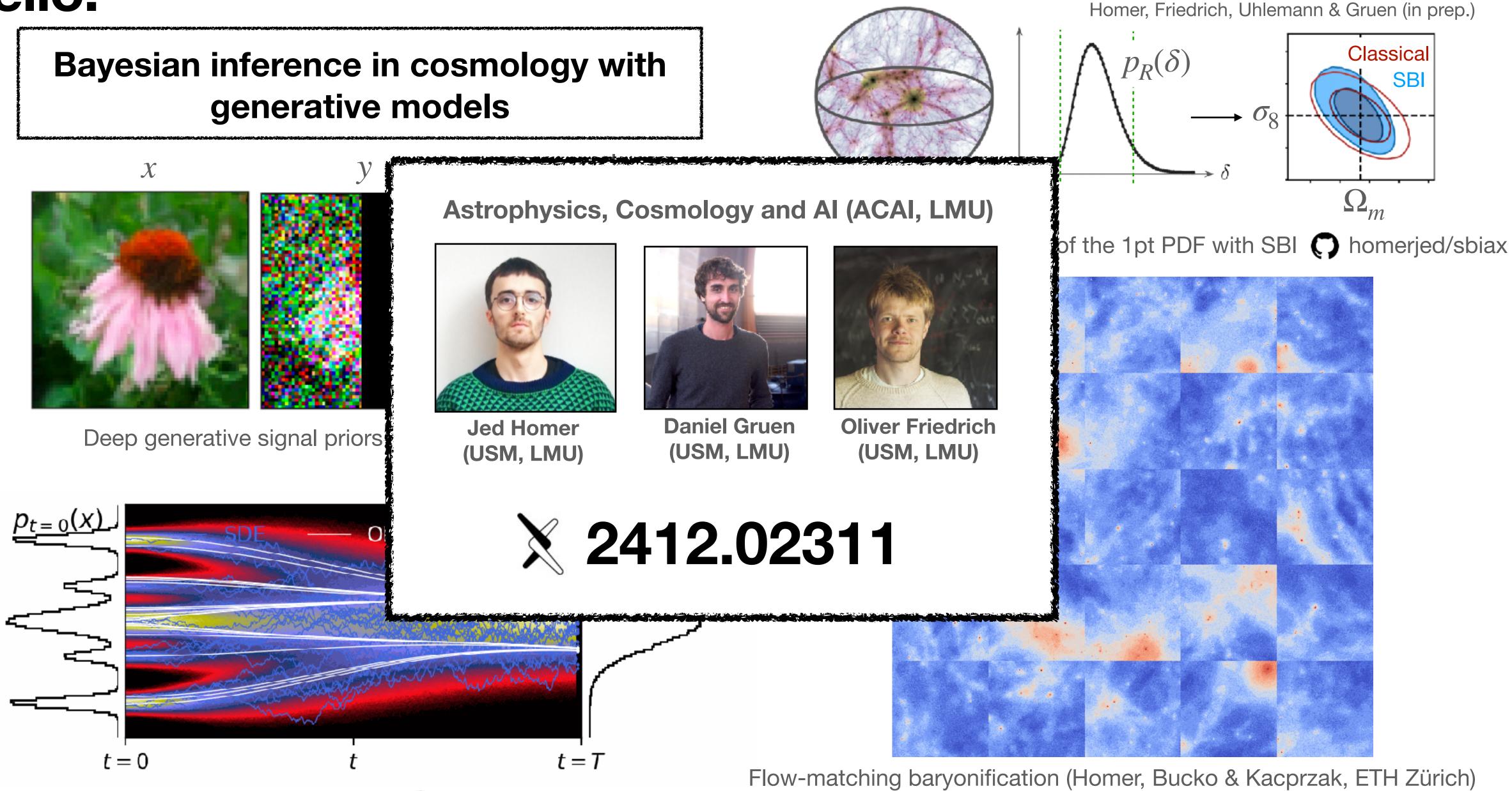


 $p_{t=2.0}(x)$

Flow-matching baryonification (Homer, Bucko & Kacprzak, ETH Zürich) C homerjed/rectified_flows

Hello!

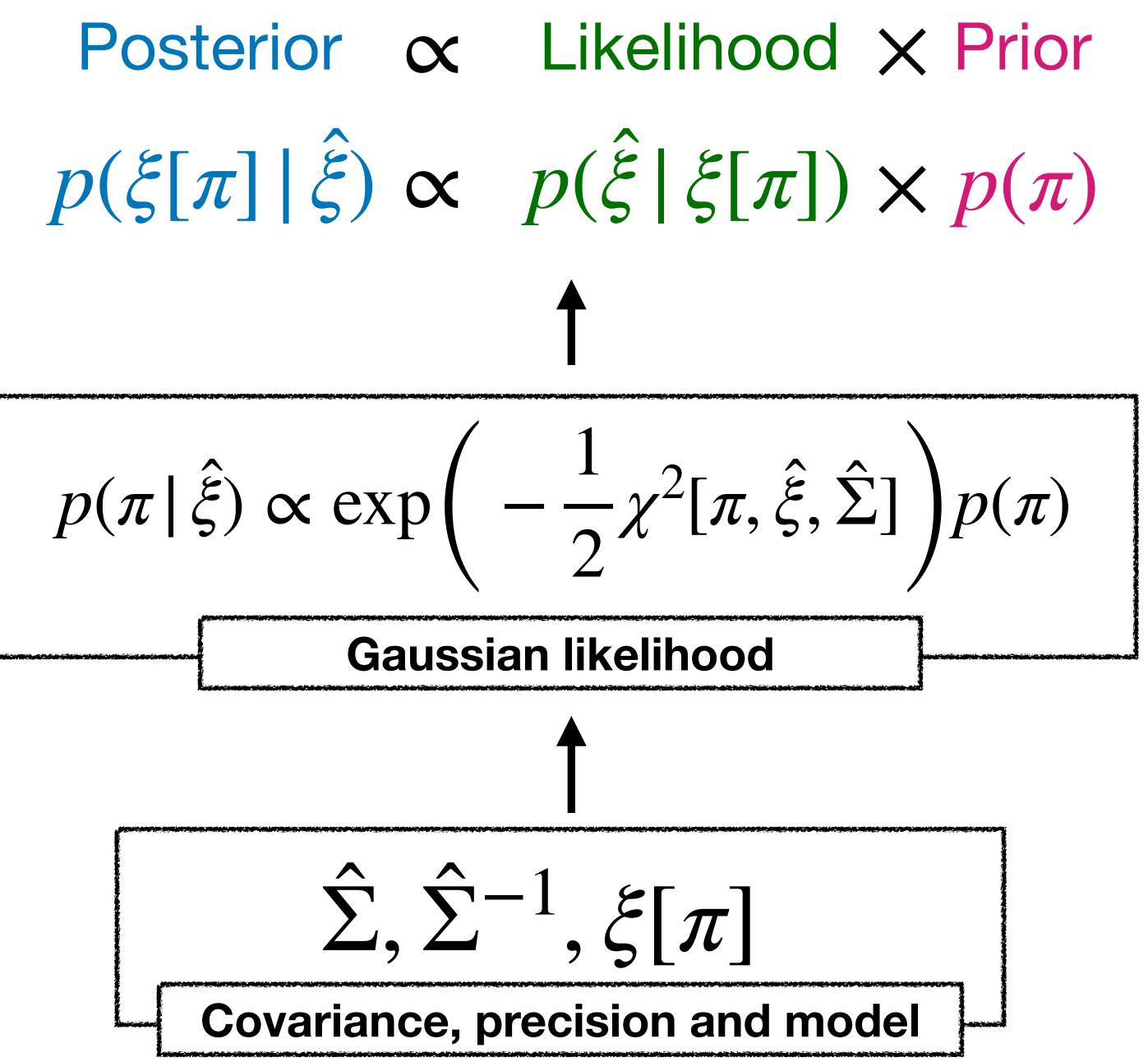
generative models

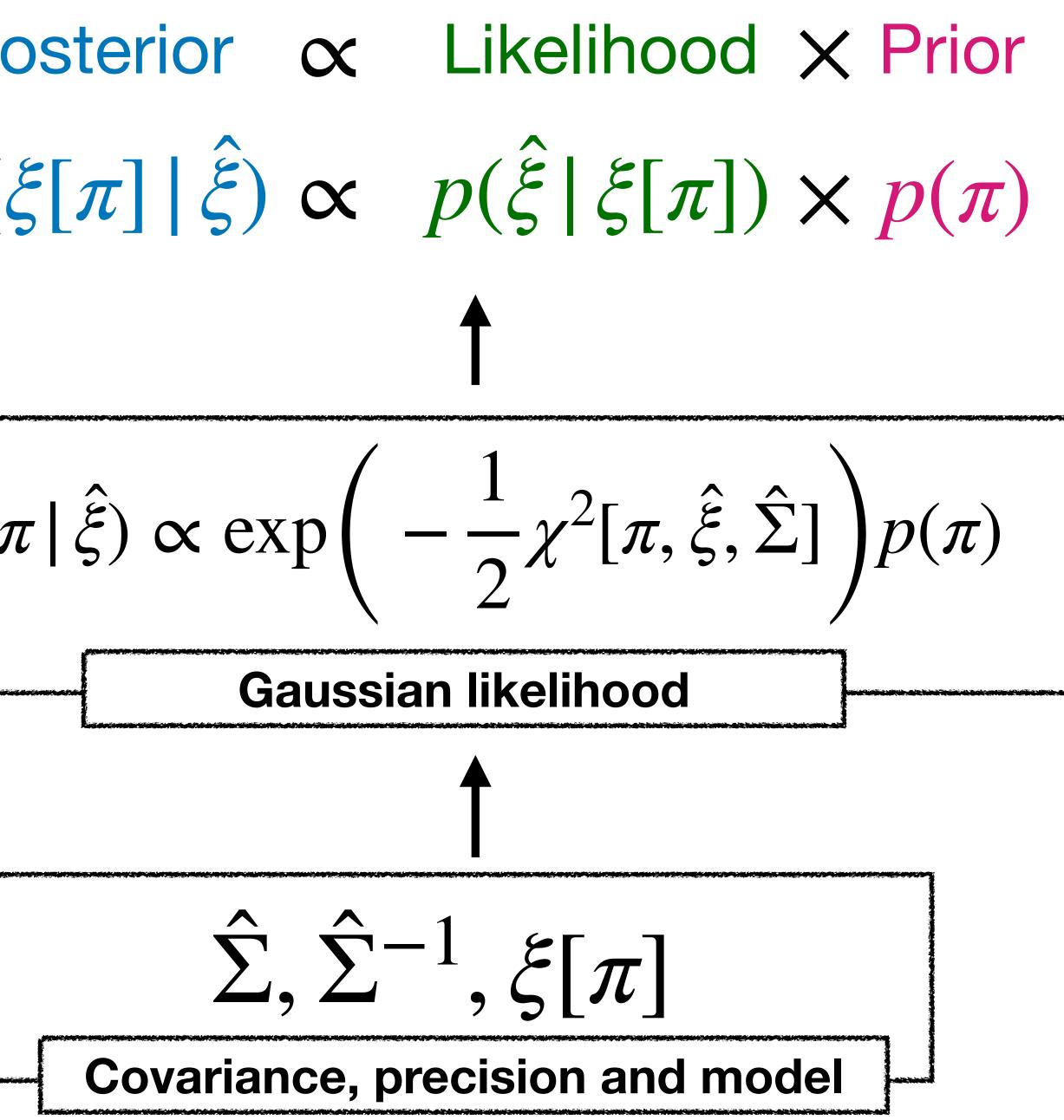


Generative diffusion processes: () homerjed/sbgm

Flow-matching baryonification (Homer, Bucko & Kacprzak, ETH Zürich) homerjed/rectified_flows







Reasons for using SBI:

- 1. Likelihood $p(\hat{\xi} | \xi[\pi])$ is non-Gaussian,
- 2. Model $\xi[\pi]$ is a complex non-linear function of π ,
- 3. Statistic $\hat{\xi}$ is inaccurately predicted in simulations,
- 4. Modelling covariance $\Sigma[\pi]$ dependence on π .

Posterior \propto Likelihood \times Prior

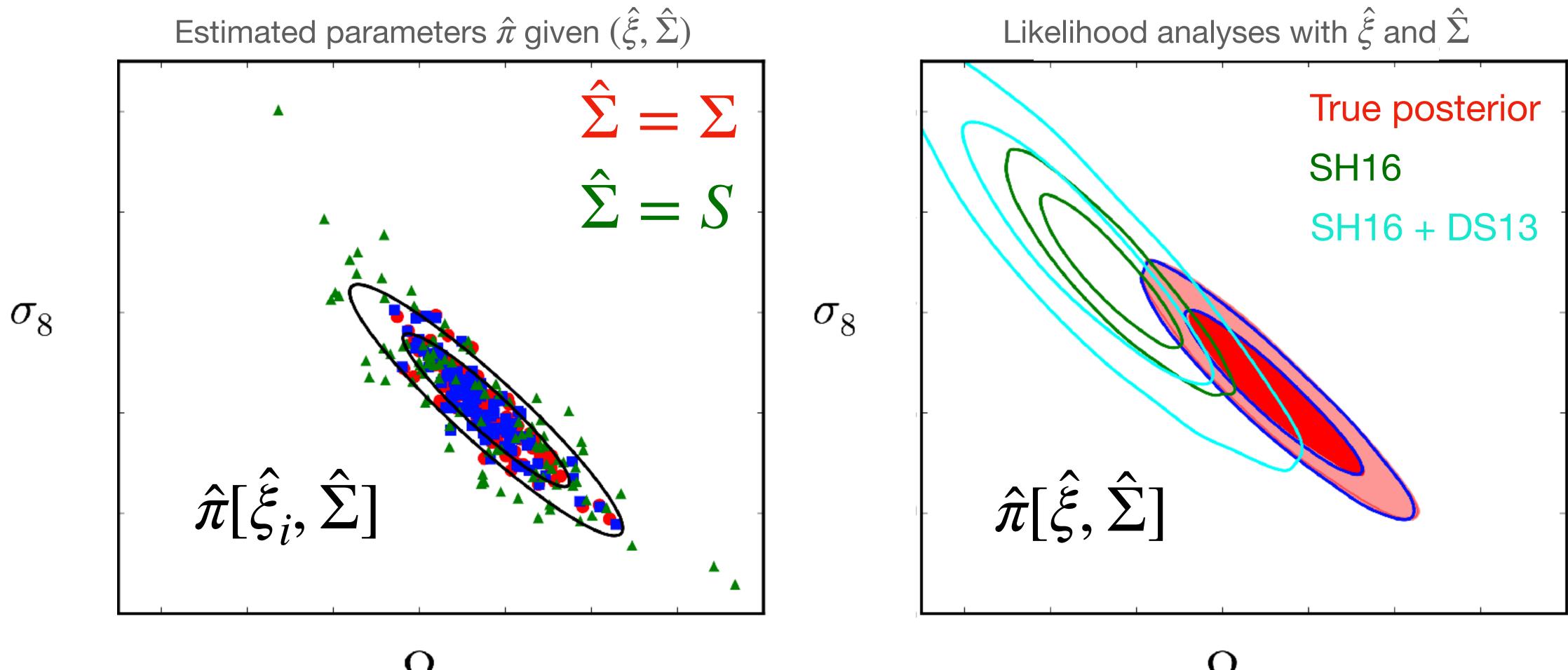
...but does it do what it says it does?

Covariance, precision and moder

Covariance matrix estimation

Building an accurate Gaussian likelihood

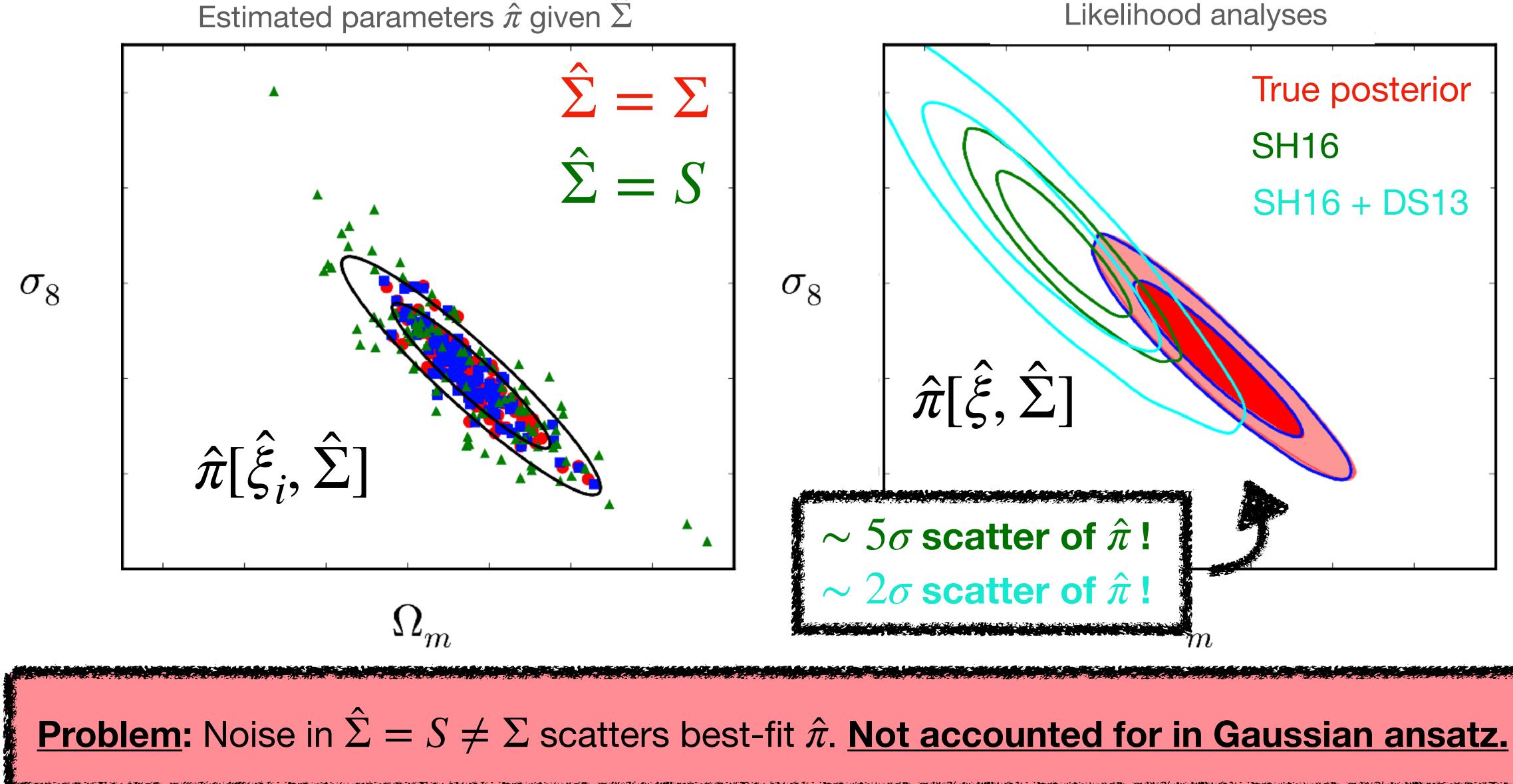
How not knowing Σ affects best-fit $\hat{\pi}$



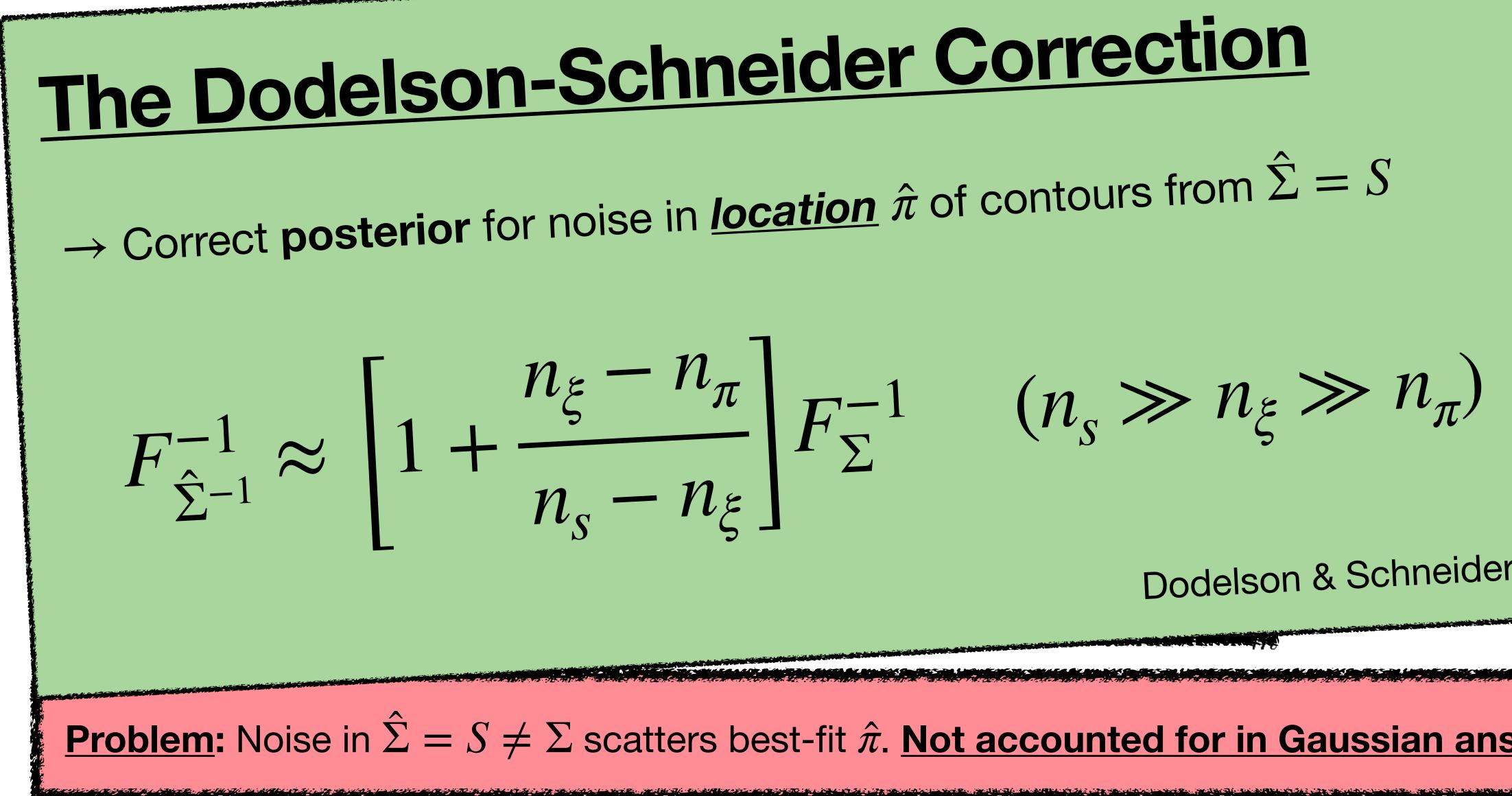
۵^۲س

How not knowing Σ affects best-fit $\hat{\pi}$

Estimated parameters $\hat{\pi}$ given $\hat{\Sigma}$



How not knowing Σ affects best-fit $\hat{\pi}$



Dodelson & Schneider 2013

Problem: Noise in $\hat{\Sigma} = S \neq \Sigma$ scatters best-fit $\hat{\pi}$. Not accounted for in Gaussian ansatz.

An analytic solution^{*} to fixing posterior coverage (when you don't know Σ)

 $p(\pi \mid \hat{\xi}, S) \propto p(\hat{\xi})$ Posterior g

• Choose a prior such that over repeated experiments (ξ, S):

 $\langle (\hat{\pi} - \pi) (\hat{\pi} - \pi)^T \rangle_{\hat{\xi},S}$

Frequentist

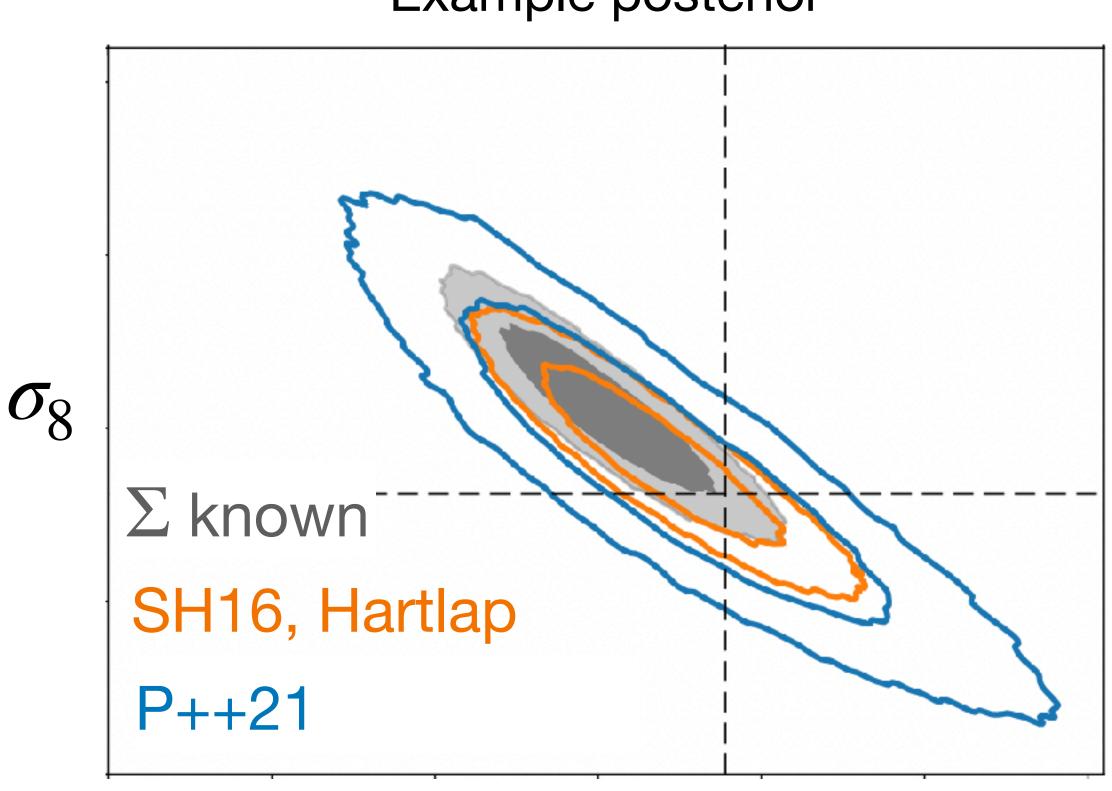
$$\hat{\xi} \mid \pi, \Sigma) p(\Sigma \mid S) p(\pi)$$
given S posterior on Σ

$$\approx \langle (\pi - \hat{\pi})(\pi - \hat{\pi})^T \rangle_{\hat{\xi},S}$$

Bayesian

Percival++14, Sellentin+16, Percival++21

The Bayesian approach...



Example posterior

Ω_m

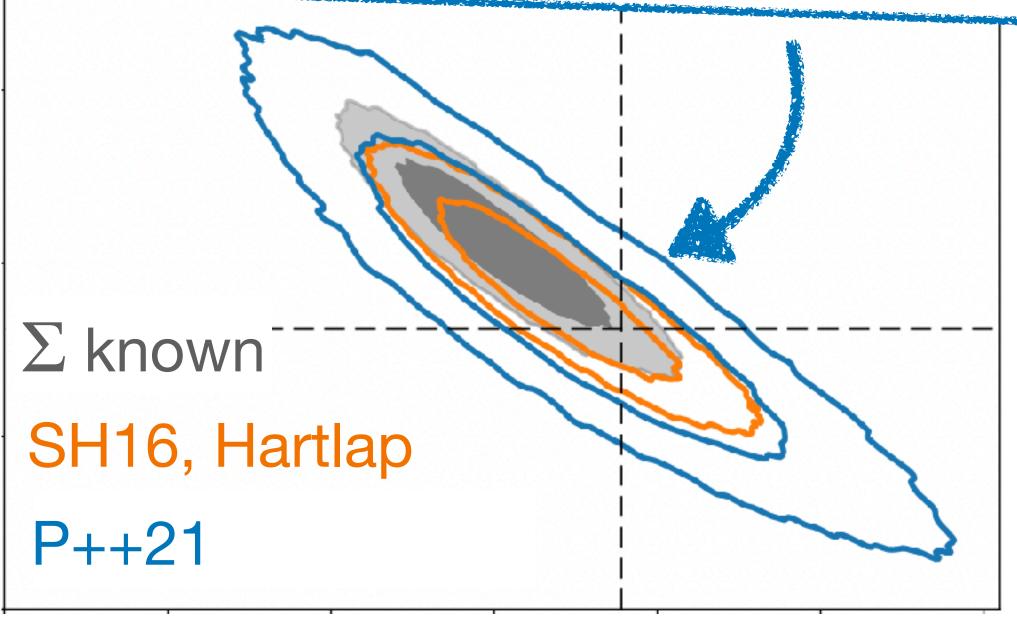
• Corrected coverage + accounting for unknown Σ \implies larger posterior widths

Percival++21

Examples: O homerjed/frequentist_matching_priors

The Bayesian approach...

This is the solution a machine is aiming for!

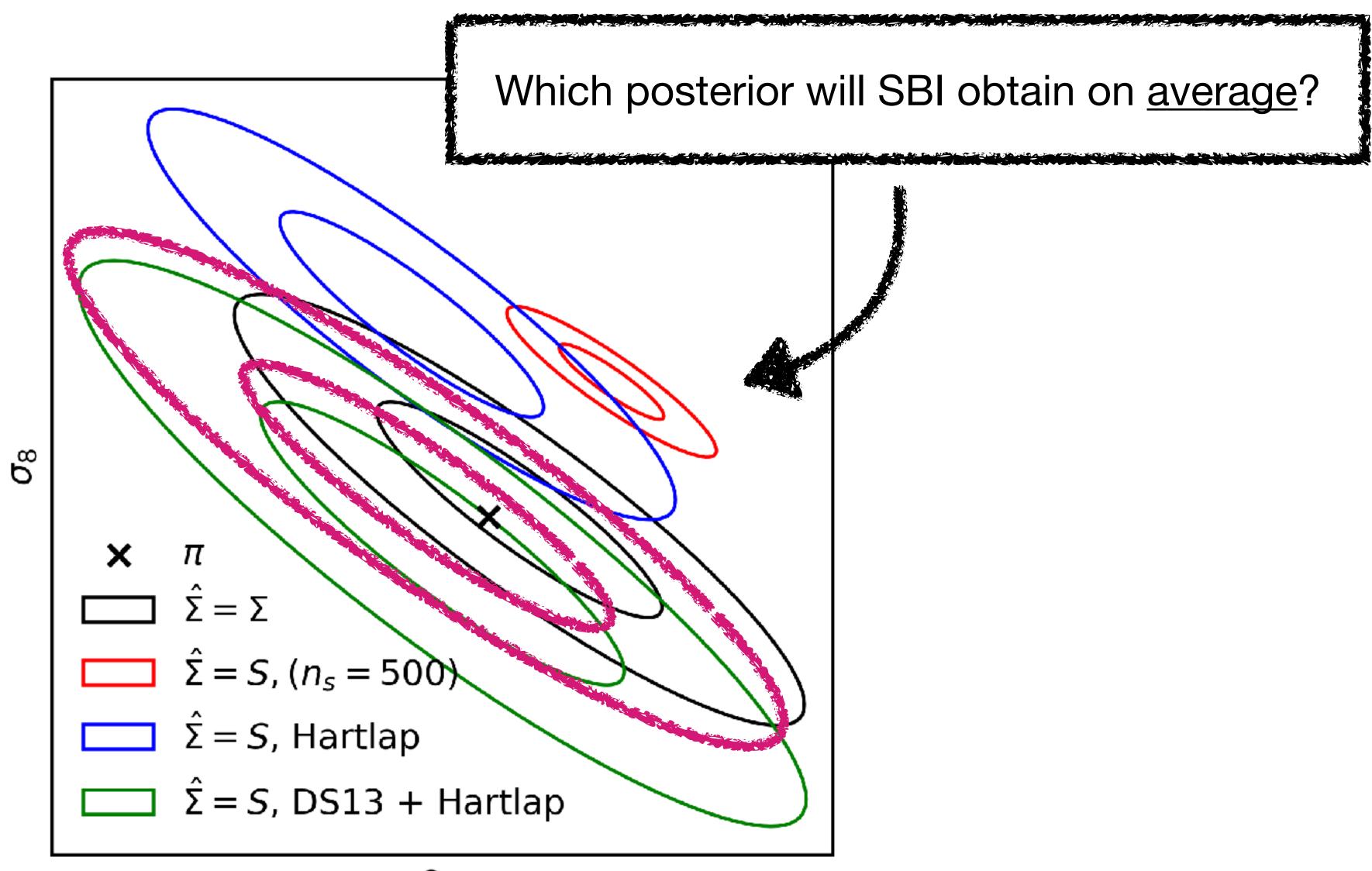


Ω_m

• Corrected coverage + accounting for unknown Σ \implies larger posterior widths

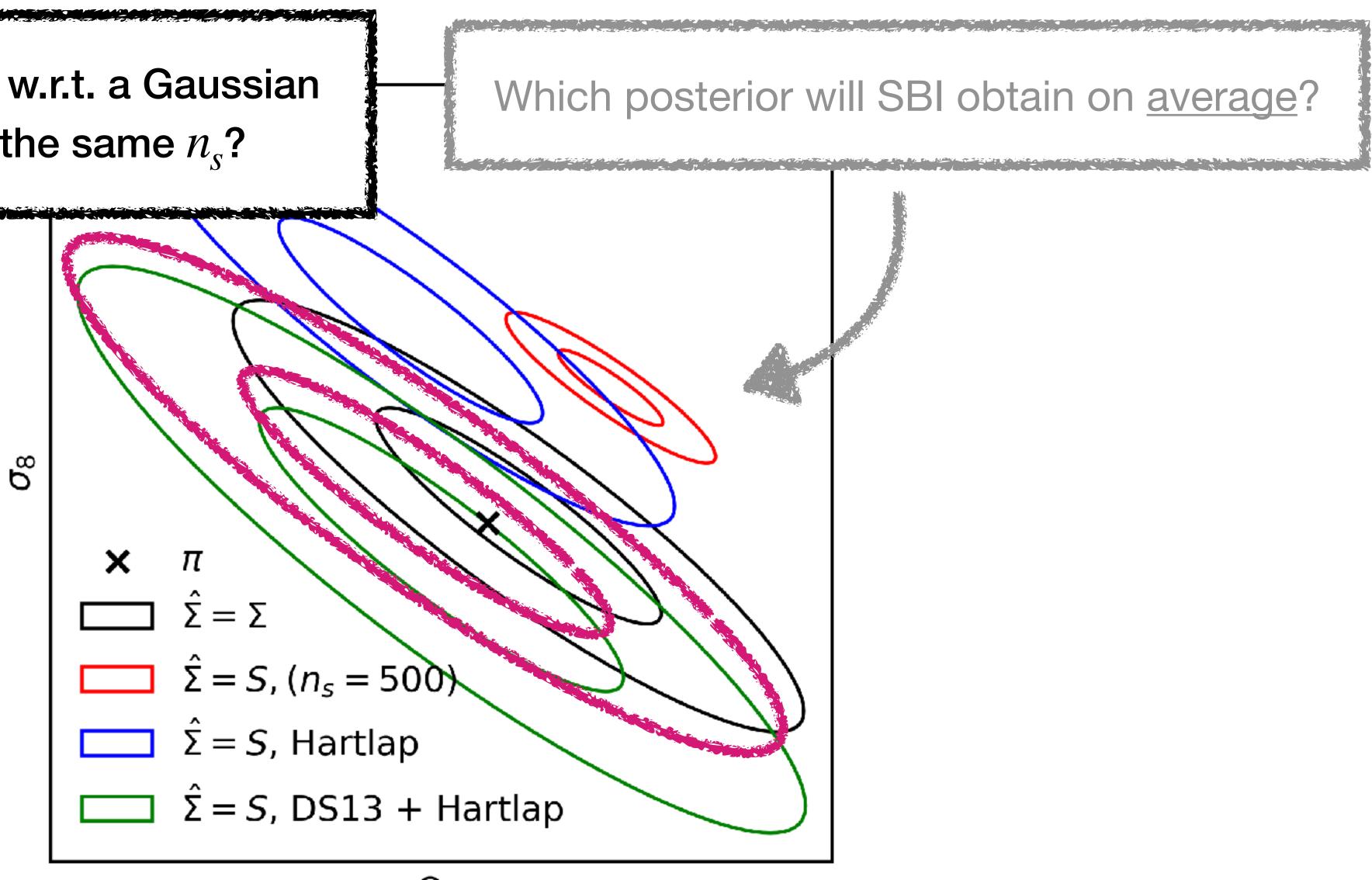
Percival++21

Examples: O homerjed/frequentist_matching_priors



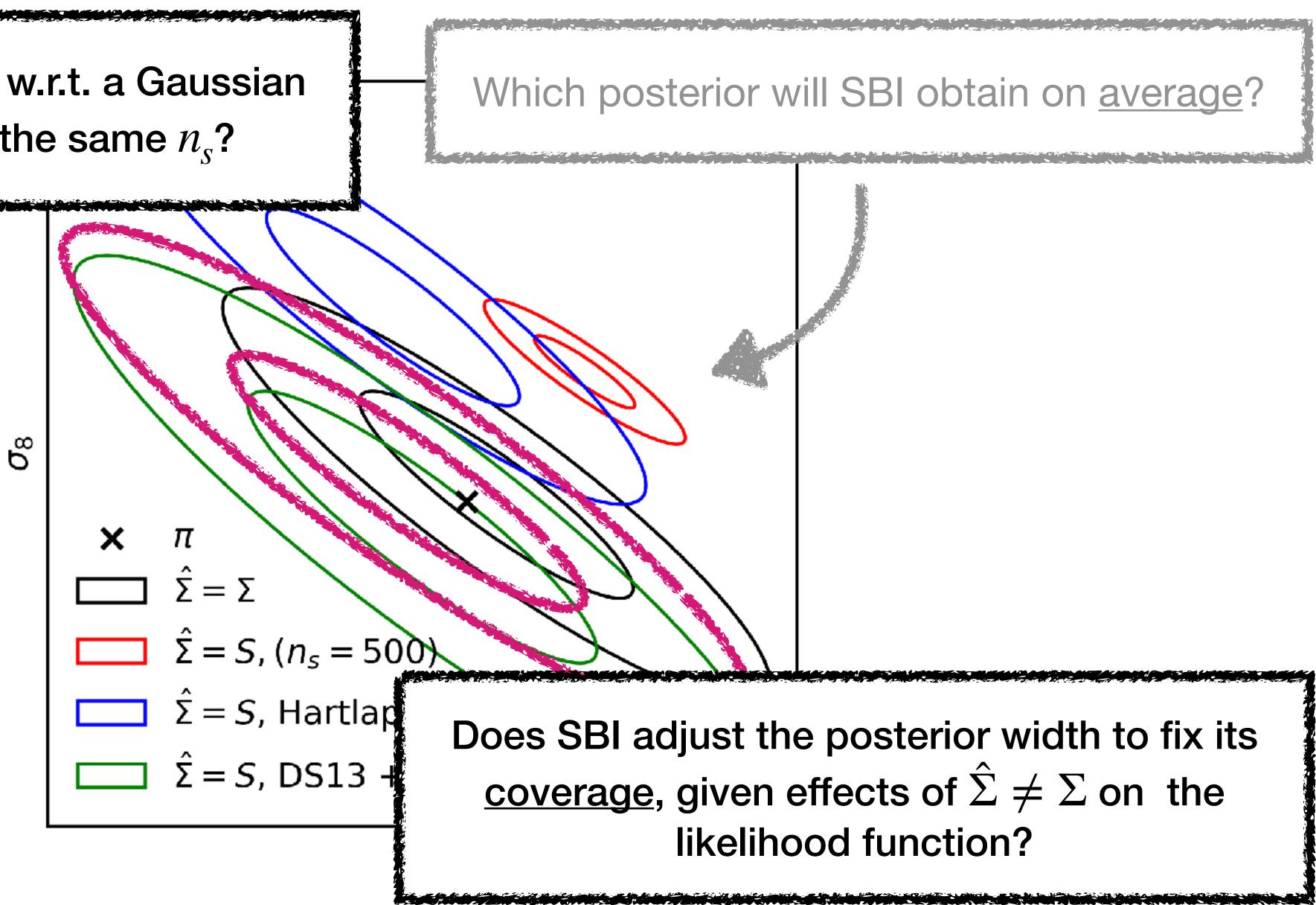
 Ω_m

Are the posteriors inflated w.r.t. a Gaussian likelihood analysis for the same n_s ?

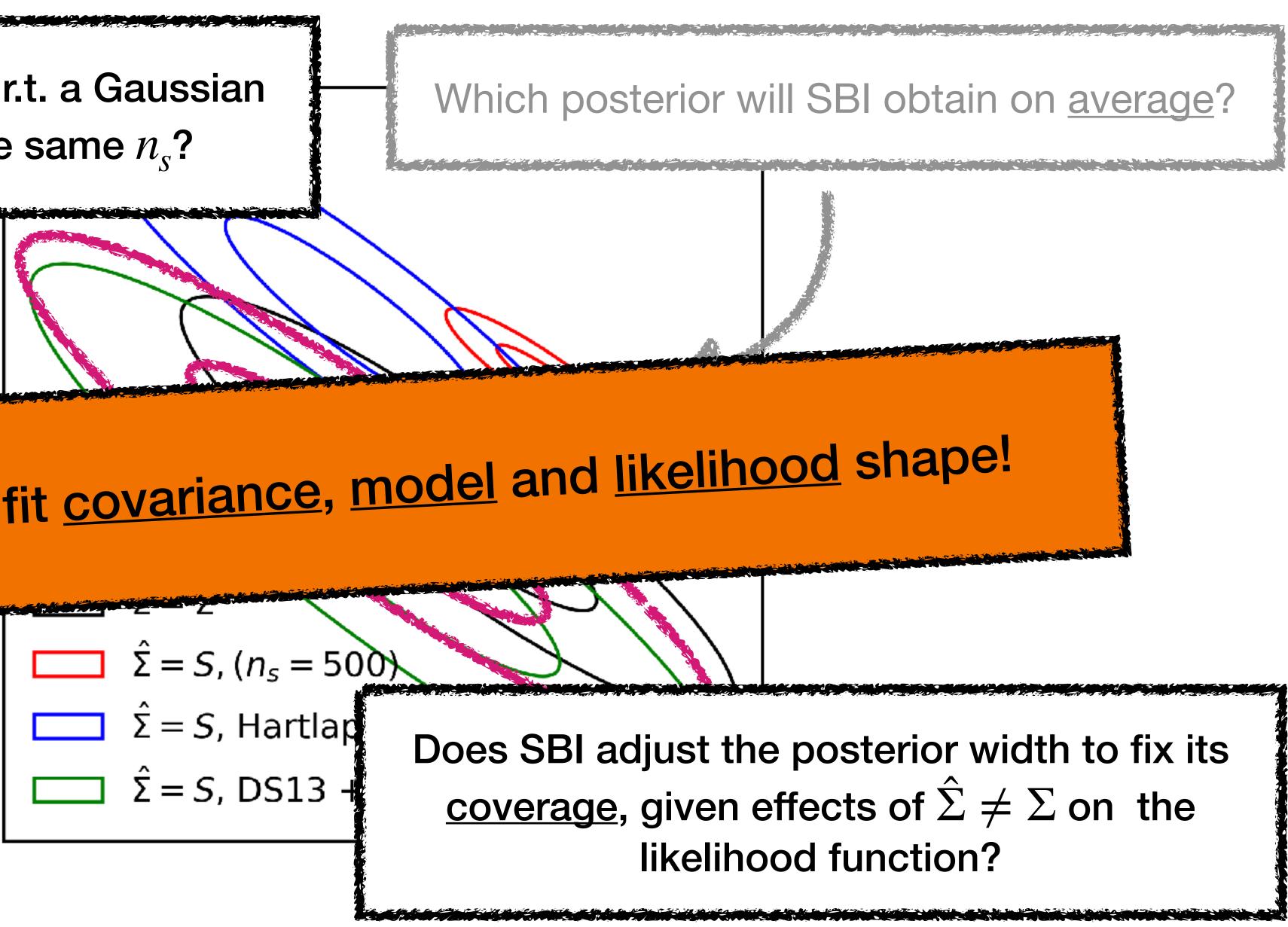


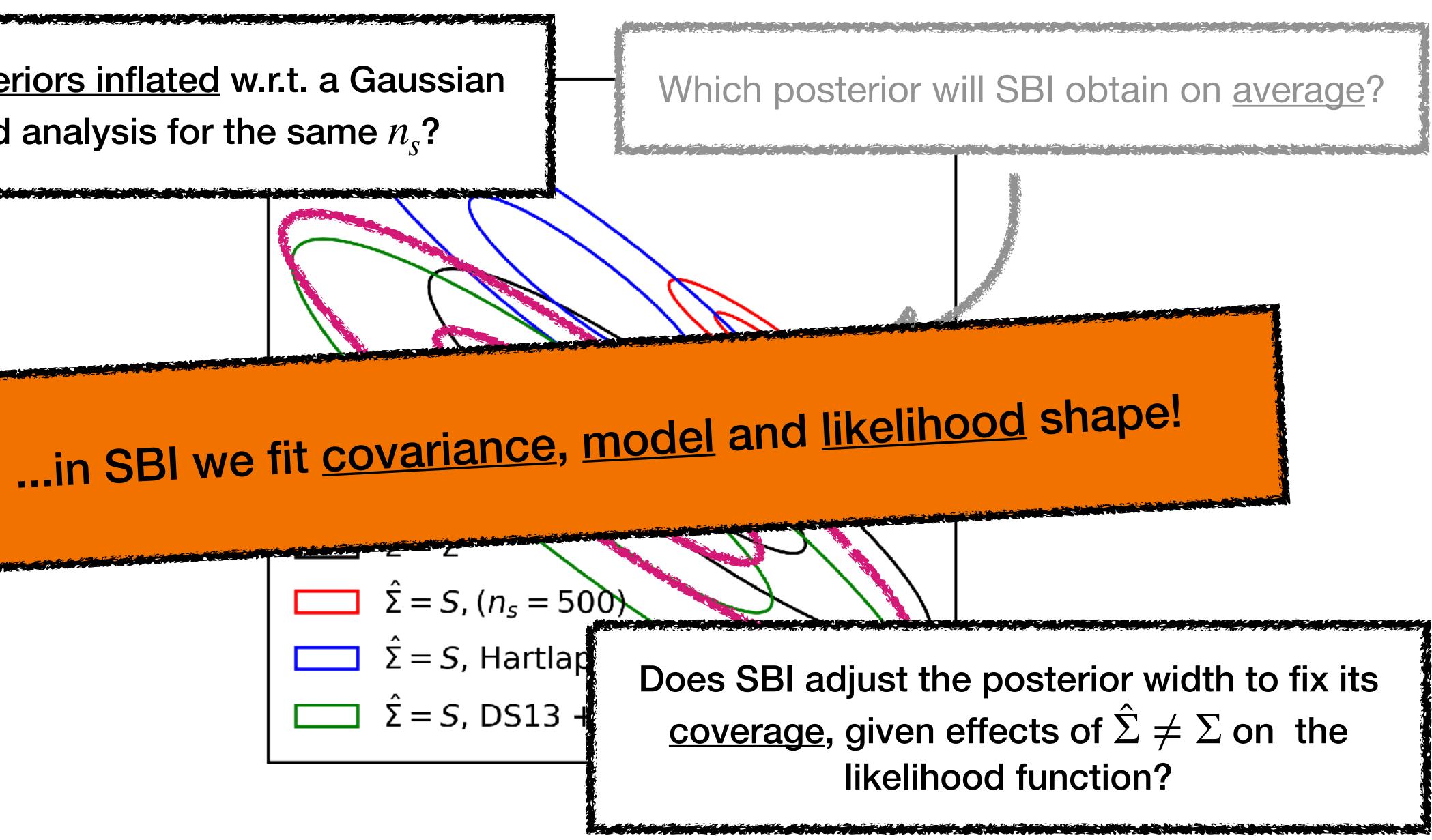
 Ω_m

Are the posteriors inflated w.r.t. a Gaussian likelihood analysis for the same n_s ?



Are the posteriors inflated w.r.t. a Gaussian likelihood analysis for the same n_{c} ?





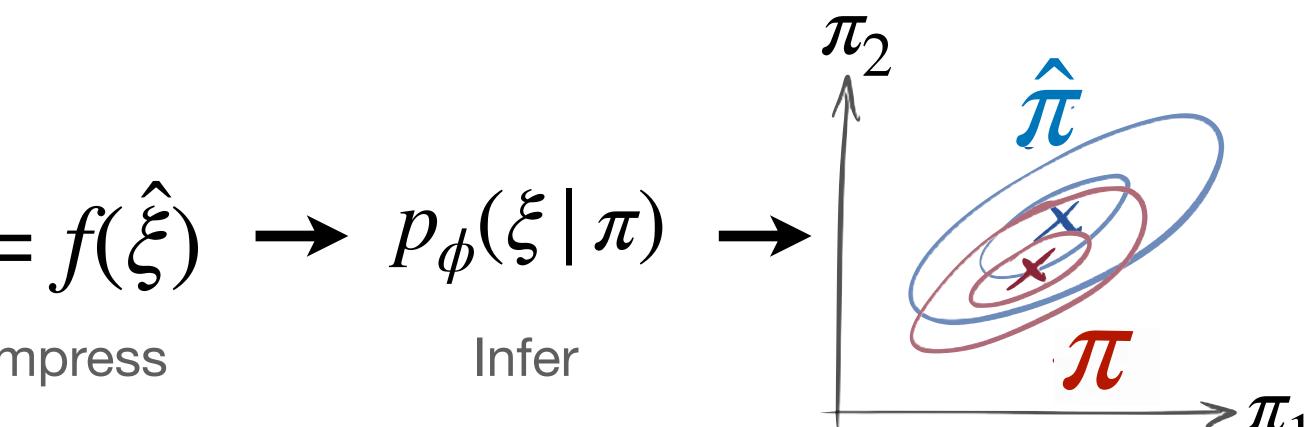
Challenging SBI

Testing likelihoods built by machines

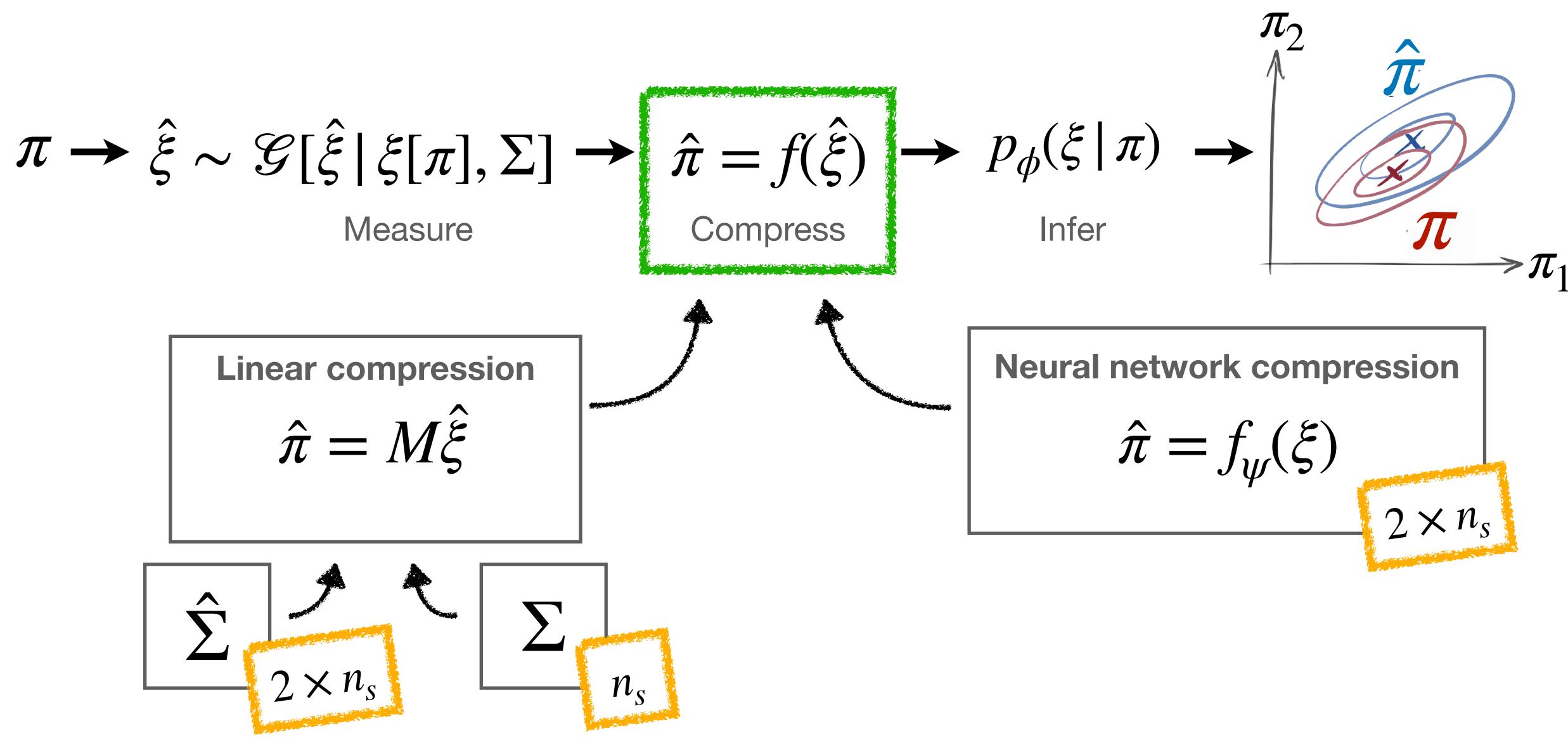
An experiment with SBI

• $\hat{\xi} \leftarrow$ linearised model for <u>DES-Y3 shear 2pt functions</u>.

$$\begin{split} \pi \to \hat{\xi} \sim \mathscr{G}[\hat{\xi} | \xi[\pi], \Sigma] \to \hat{\pi} = f(\hat{\xi}) \to p_{\phi}(\xi | \pi) \to \end{split} \\ & \text{Measure} \qquad \text{Compress} \qquad \text{Infer} \end{split}$$

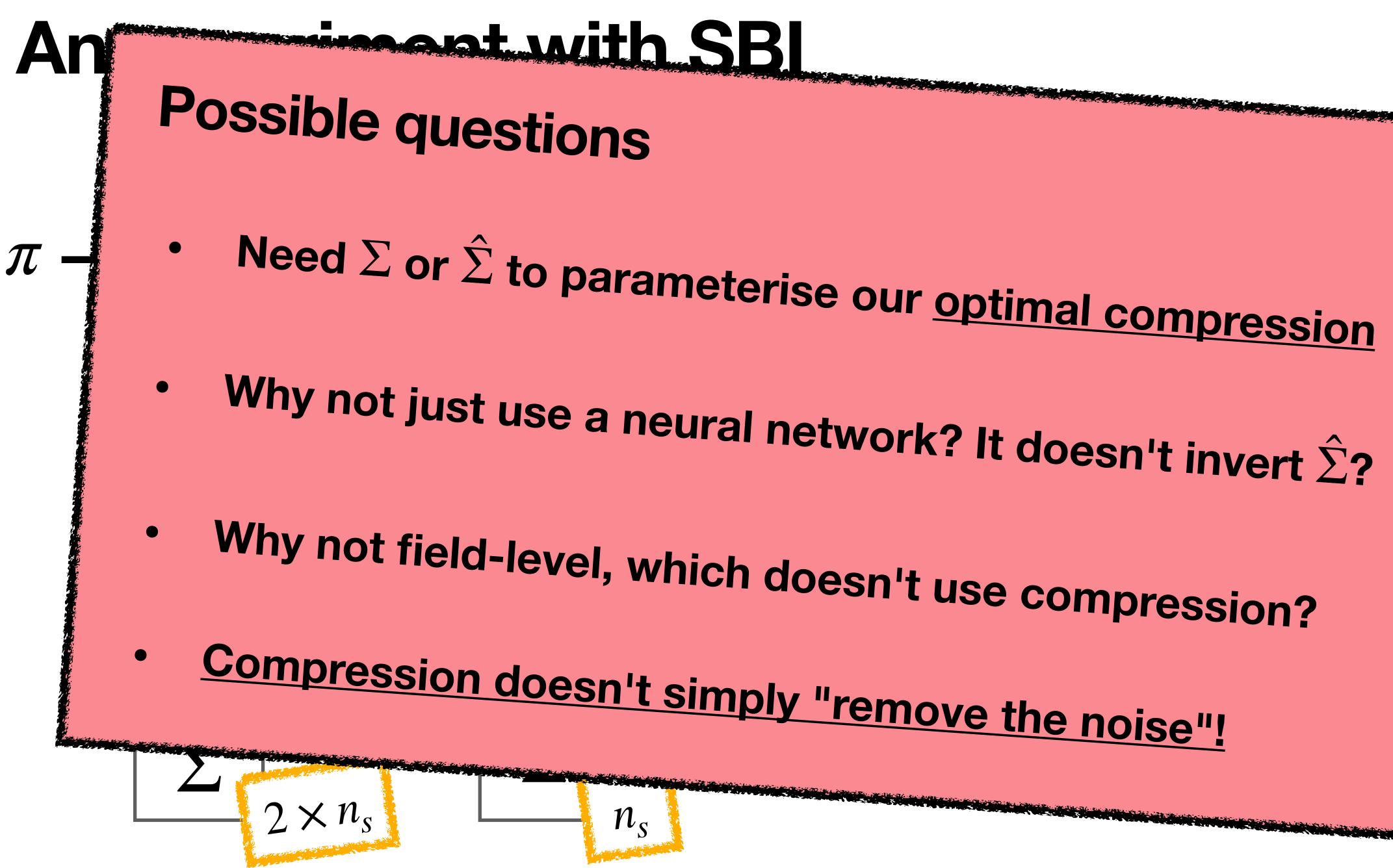


An experiment with SBI



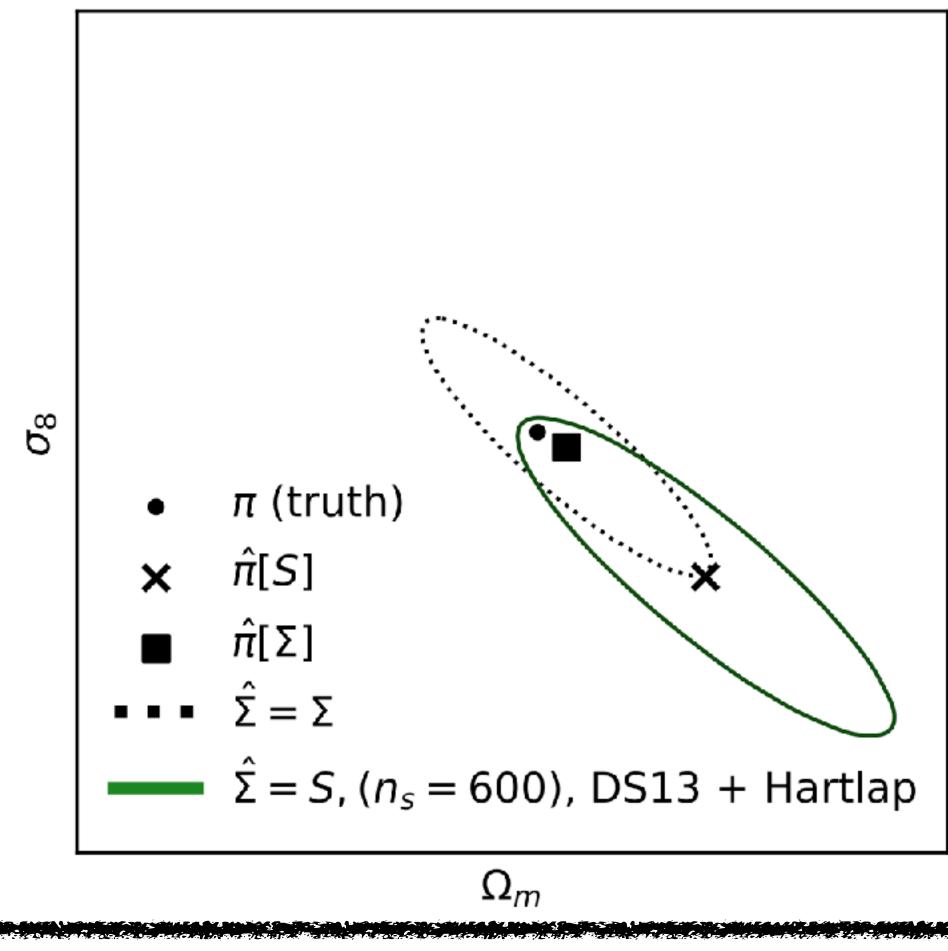
$$\hat{\pi} = f_{\psi}(\xi)$$

$$2 \times n_s$$



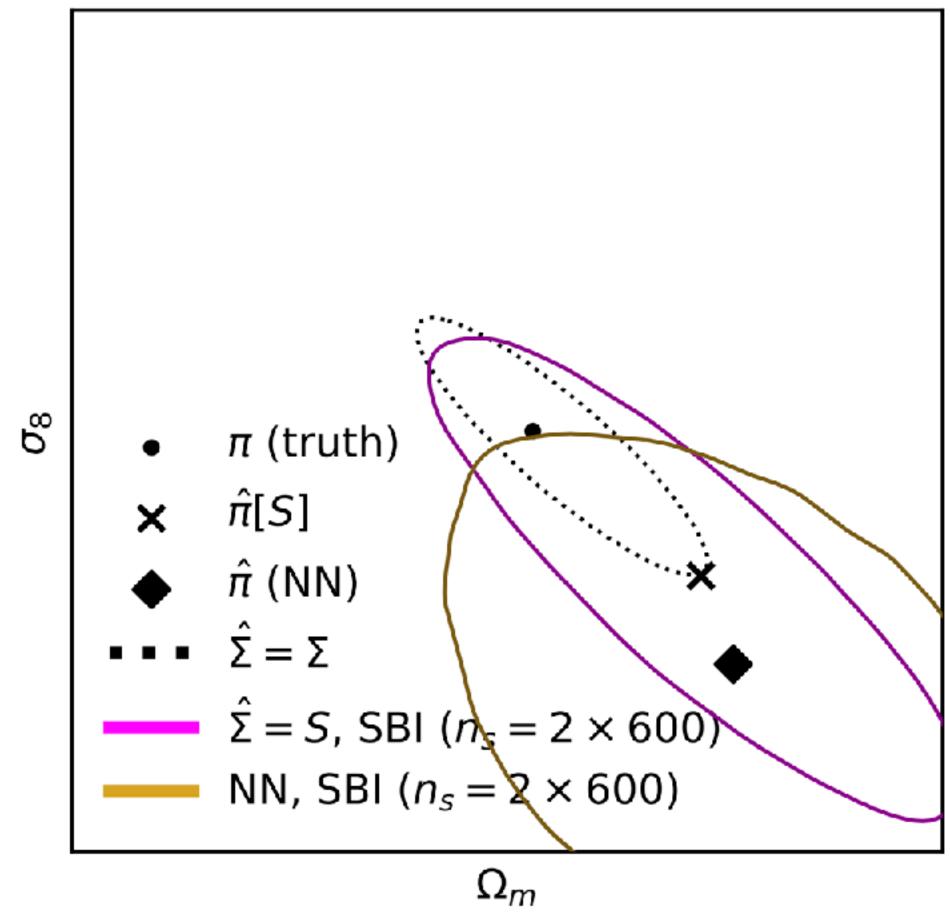
Spoiler (in one universe):

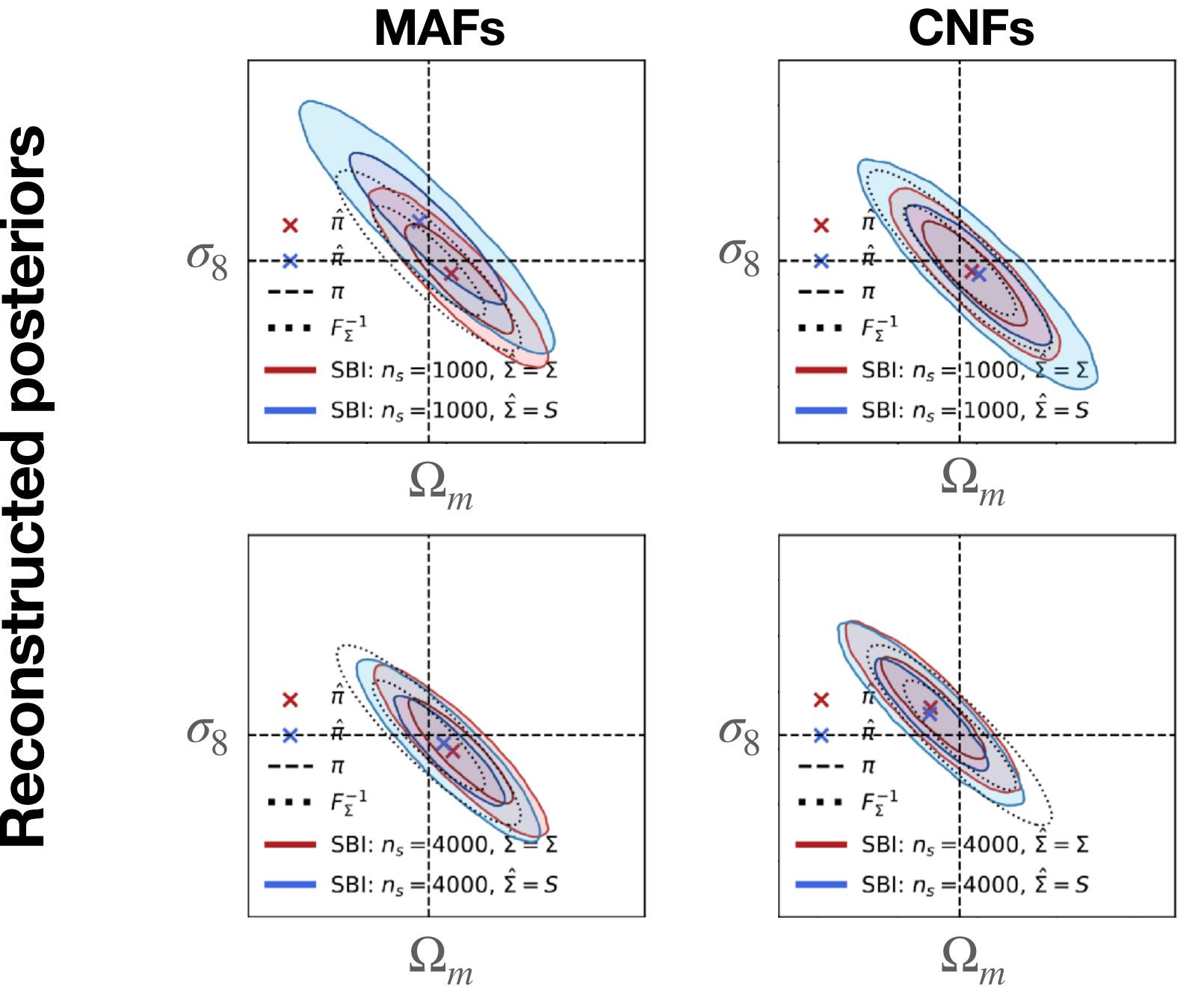
Gaussian likelihood analysis



SBI is *aware* of the Dodelson-Schneider effect but it is *inefficient* in its response!

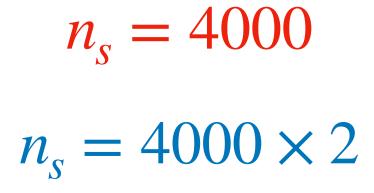
Simulation-based inference





posterio cted Ň

 $n_{s} = 1000$ $n_{s} = 1000 \times 2$



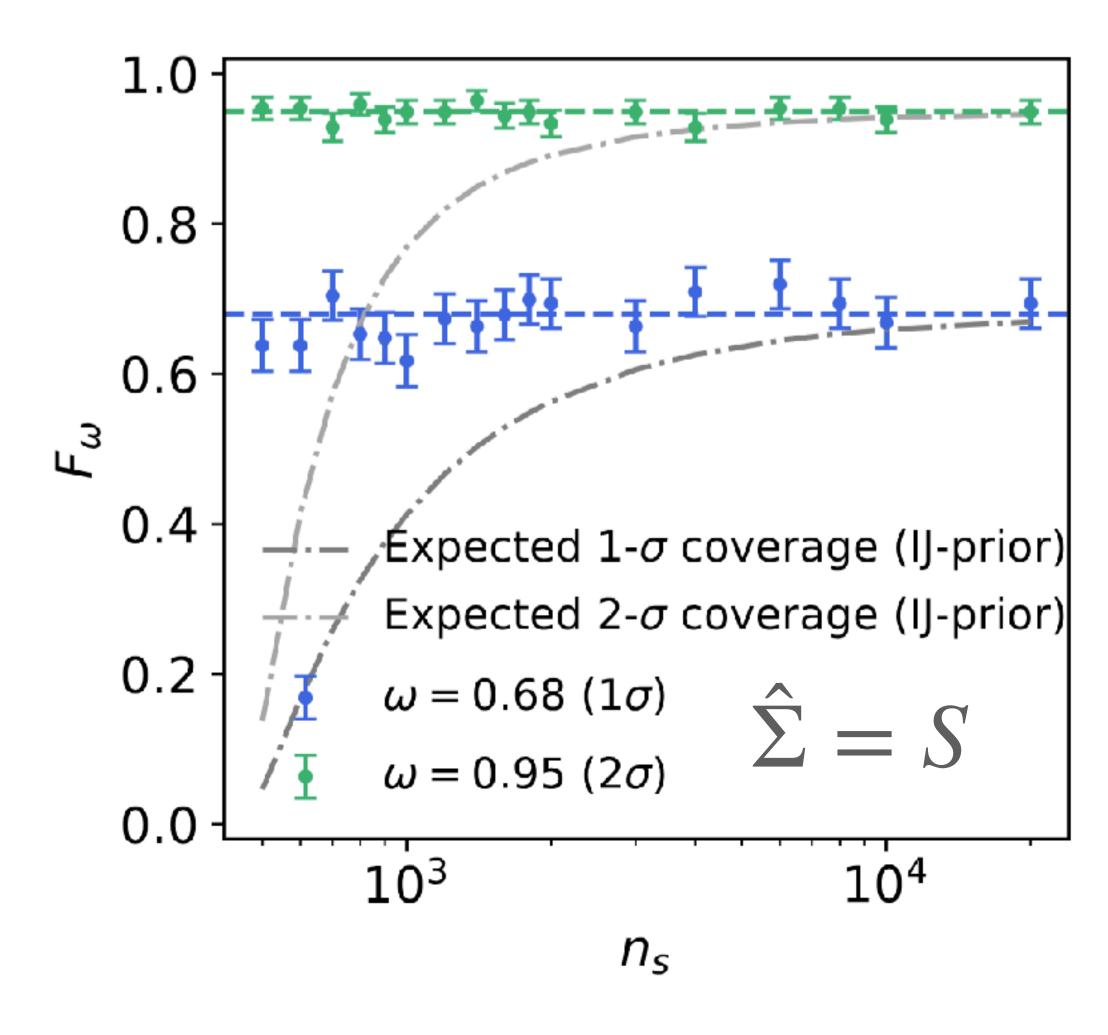
SBI posterior widths



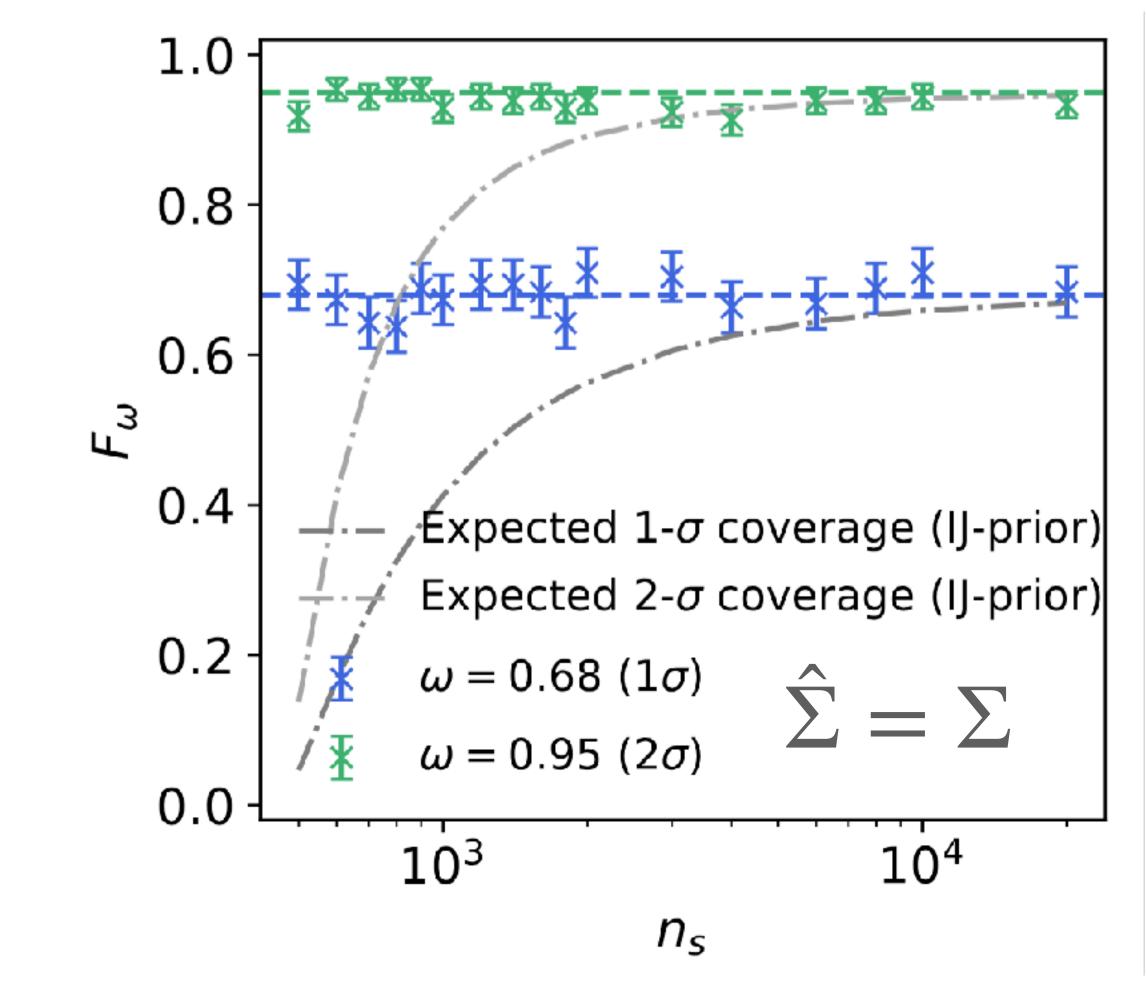
Marginal variances of SBI posteriors (NLE, MAF)

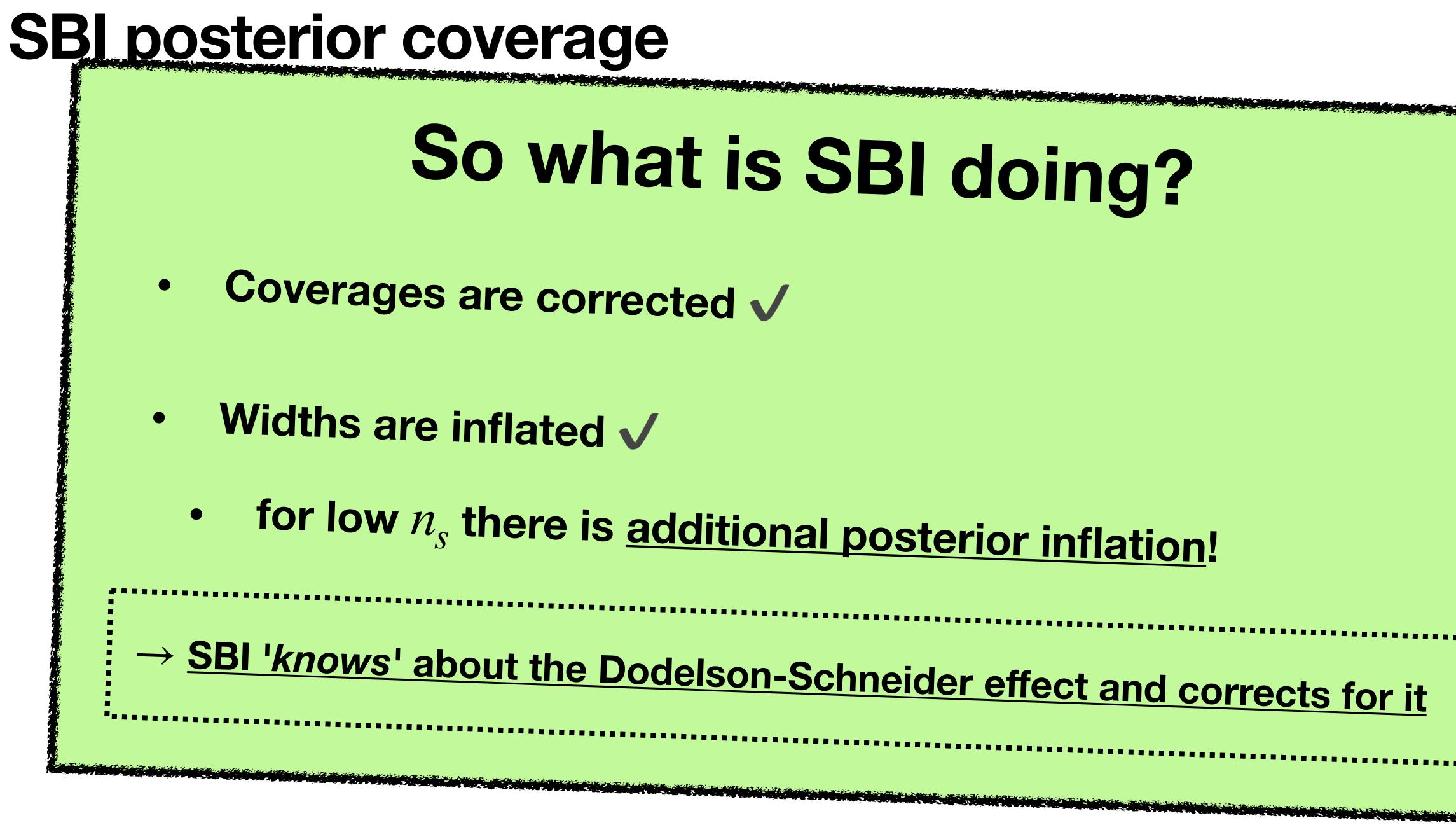
• Does SBI recover the errors it should?

SBI posterior coverage



Does SBI assign correct probability to posterior credible intervals?





So what is SBI doing?

→ SBI 'knows' about the Dodelson-Schneider effect and corrects for it

Conclusions

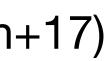
1. Using **SBI** with...

- optimal $\hat{\pi}$, true $\xi[\pi]$, Gaussian $p(\hat{\xi} \mid \xi[\pi])$,
- cutting-edge density estimation techniques,

...obtains diluted parameter constraints compared to

- a Gaussian likelihood analysis,
- and the same number of simulations n_s , a modest n_{ε} and n_{π} ,
- but SBI does what it says it does!

FM-priors (Percival++21), PME (Friedrich+17)



Conclusions

- 2. Given what is **required for analyses of LSS statistics...**
 - worse when you don't know how to summarise your data optimally,
 - your covariance Σ has strong non-diagonal structure (+ an NN for compression),
 - there are many nuisance parameters,

• and your model $\xi[\pi]$ is **complex and non-linea**r, for a **non-Gaussian** statistic.

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Thank you

Munich Center for Machine Learning

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

sbiax

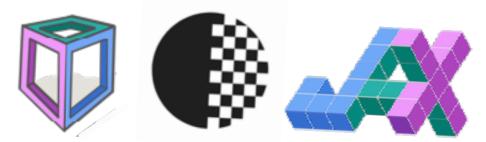
Fast, lightweight and parallel simulation-based inference.

X 2412.02311

Munich Center for Machine Learning

() homerjed/sbiax

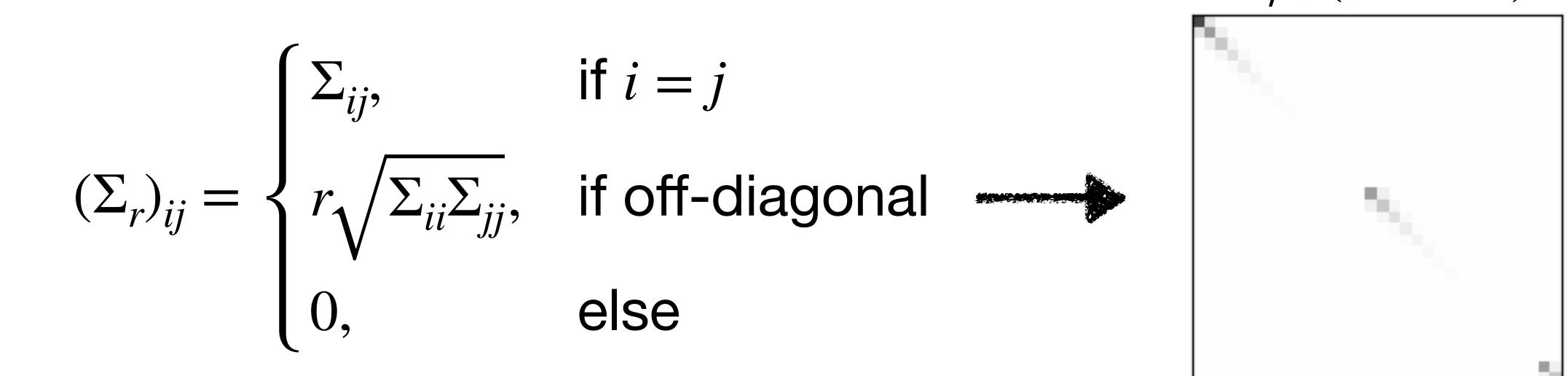
> pip install sbiax > cd examples/

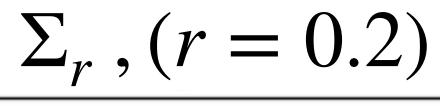


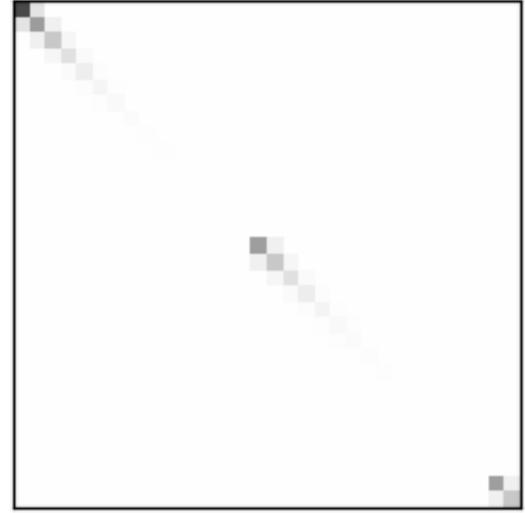
jed.homer@physik.lmu.de

Where does NN compression fail?

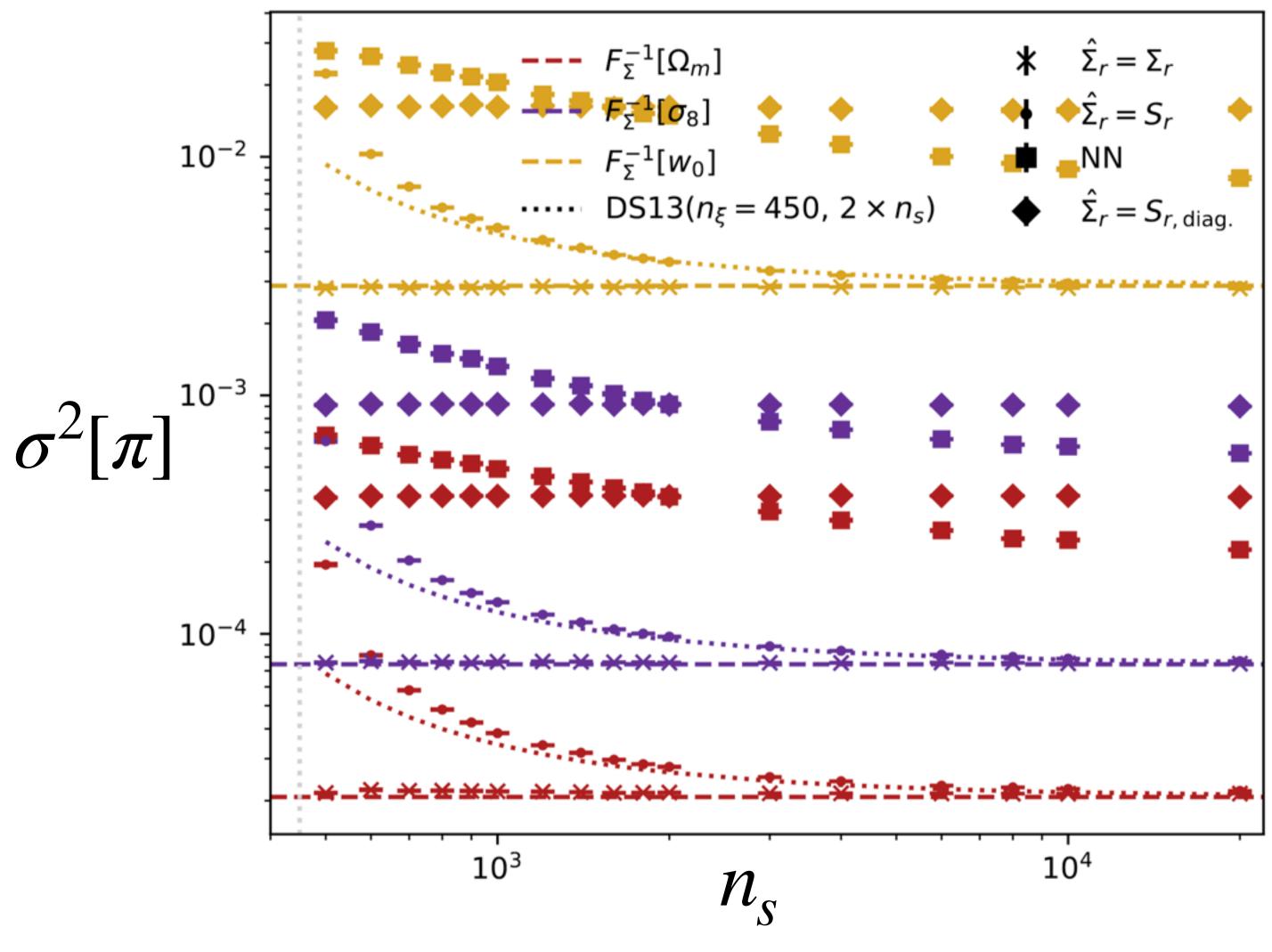
 \rightarrow Test a change to the covariance structure $\Sigma \rightarrow \Sigma_r$



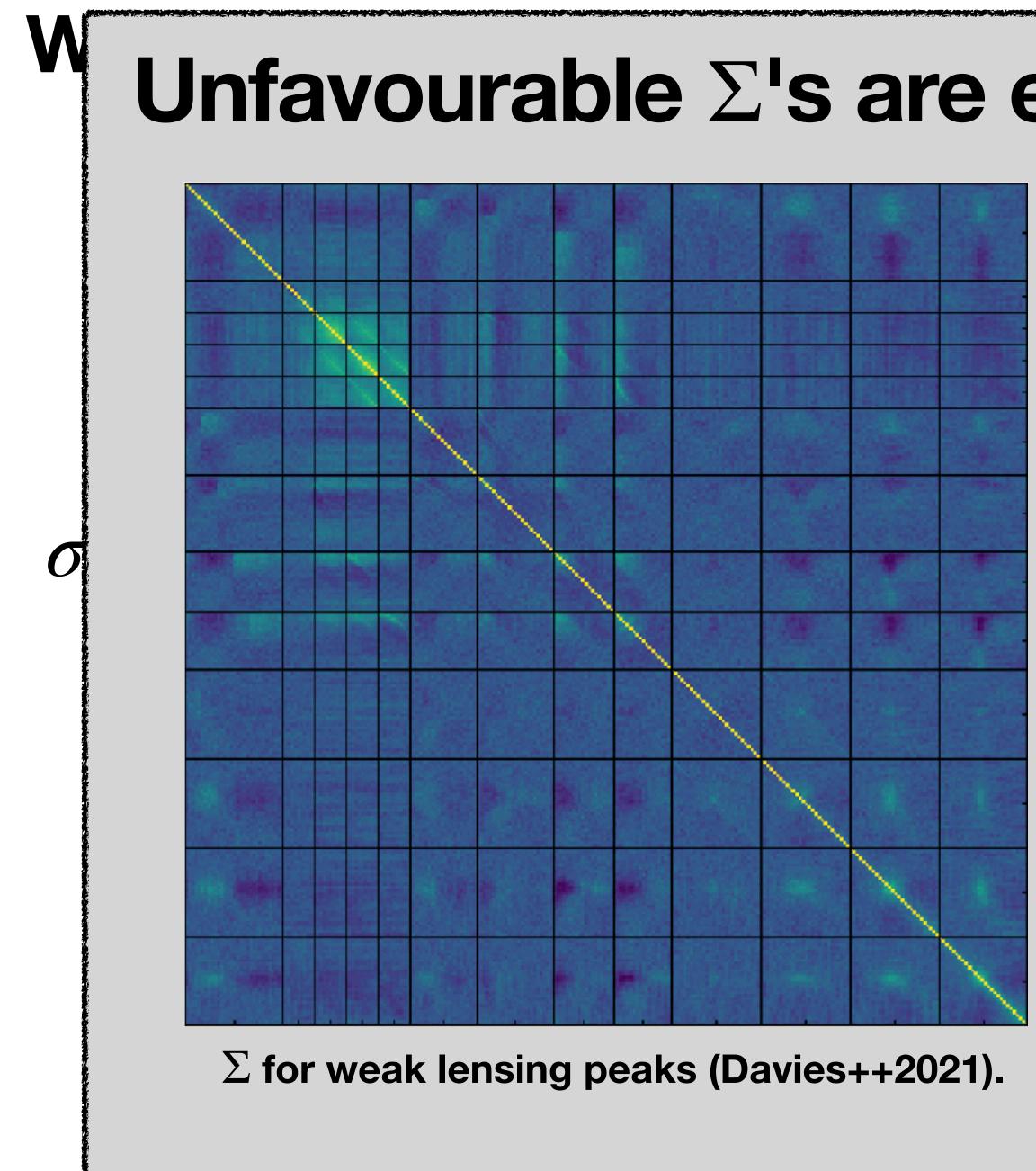




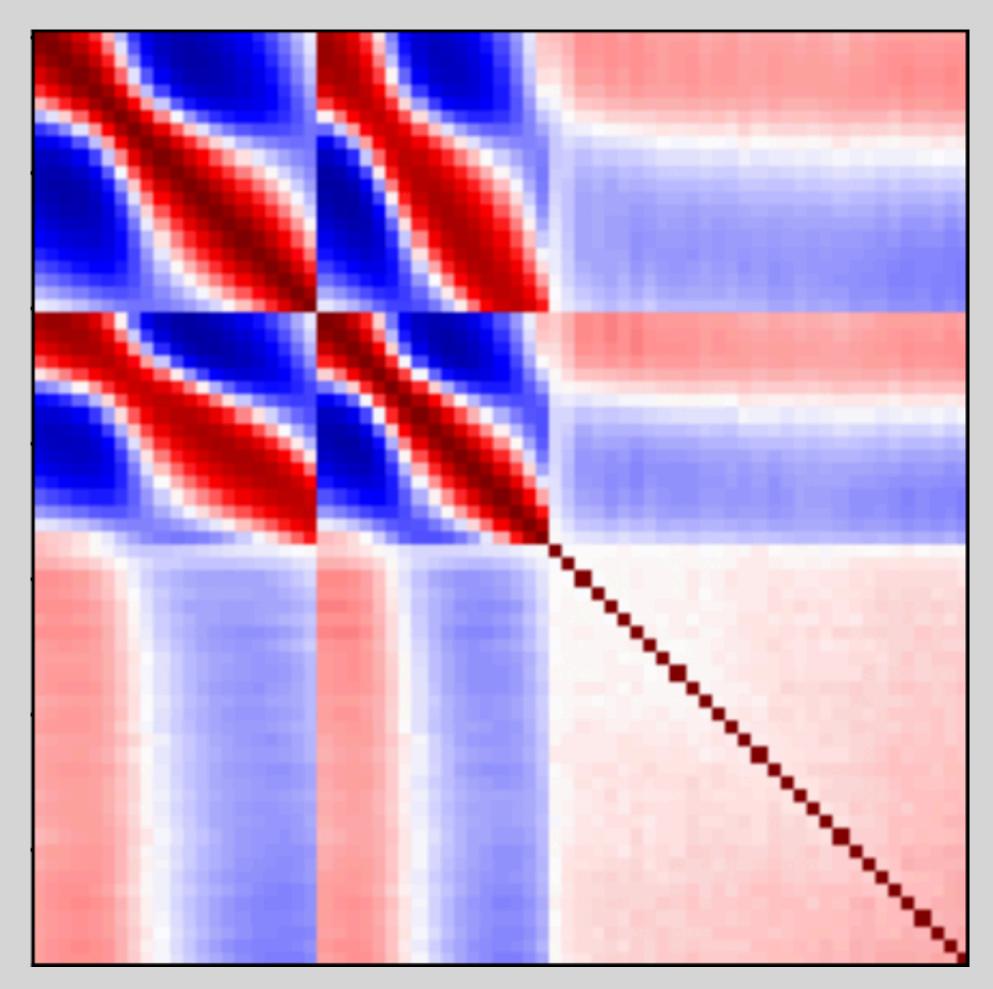
Where does NN compression fail?



NN fails to summarise when data covariance has large off-diagonal elements!

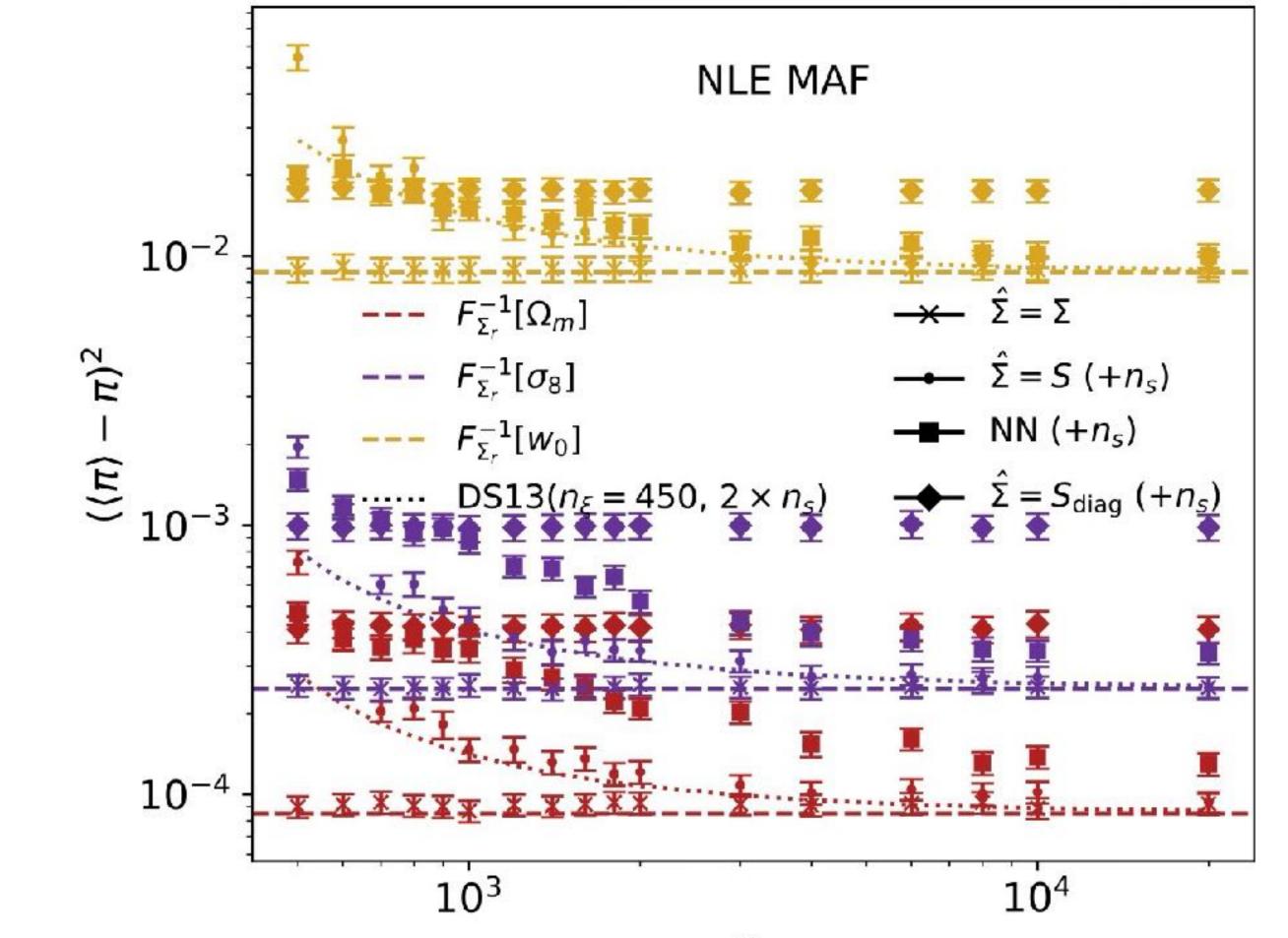


Unfavourable Σ 's are easy to find in cosmology!



 Σ for matter PDF + P(k), 3 scales, redshift zero (Uhlemann++2019).

SBI creates non-Gaussian posteriors, so what about $\langle \pi \rangle_{\pi \mid \hat{\xi}} \neq \pi$?

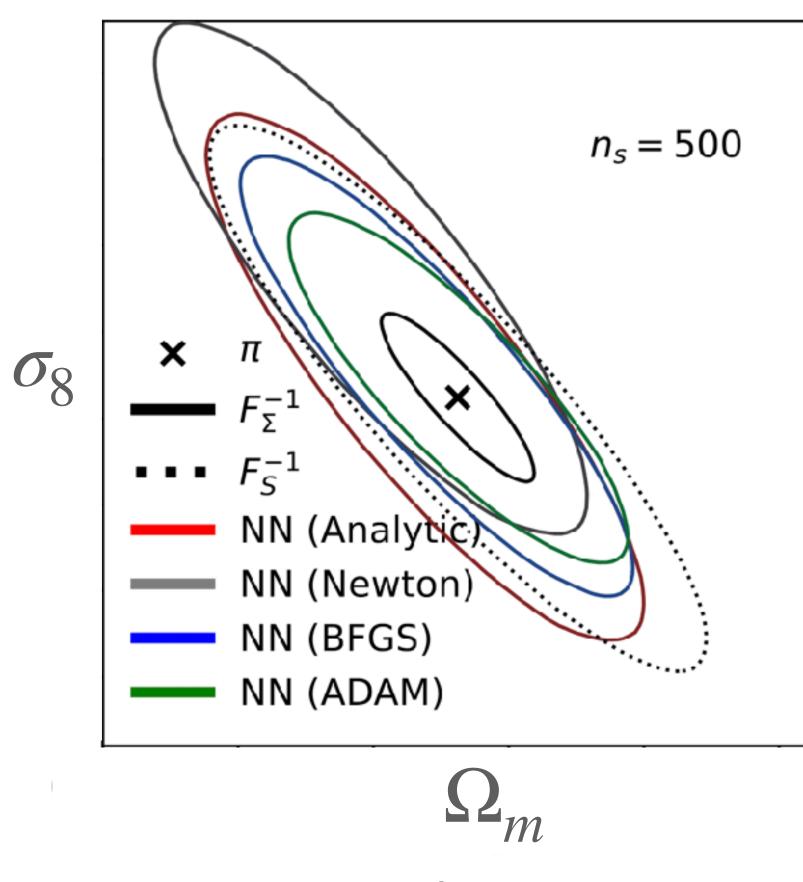


 n_s

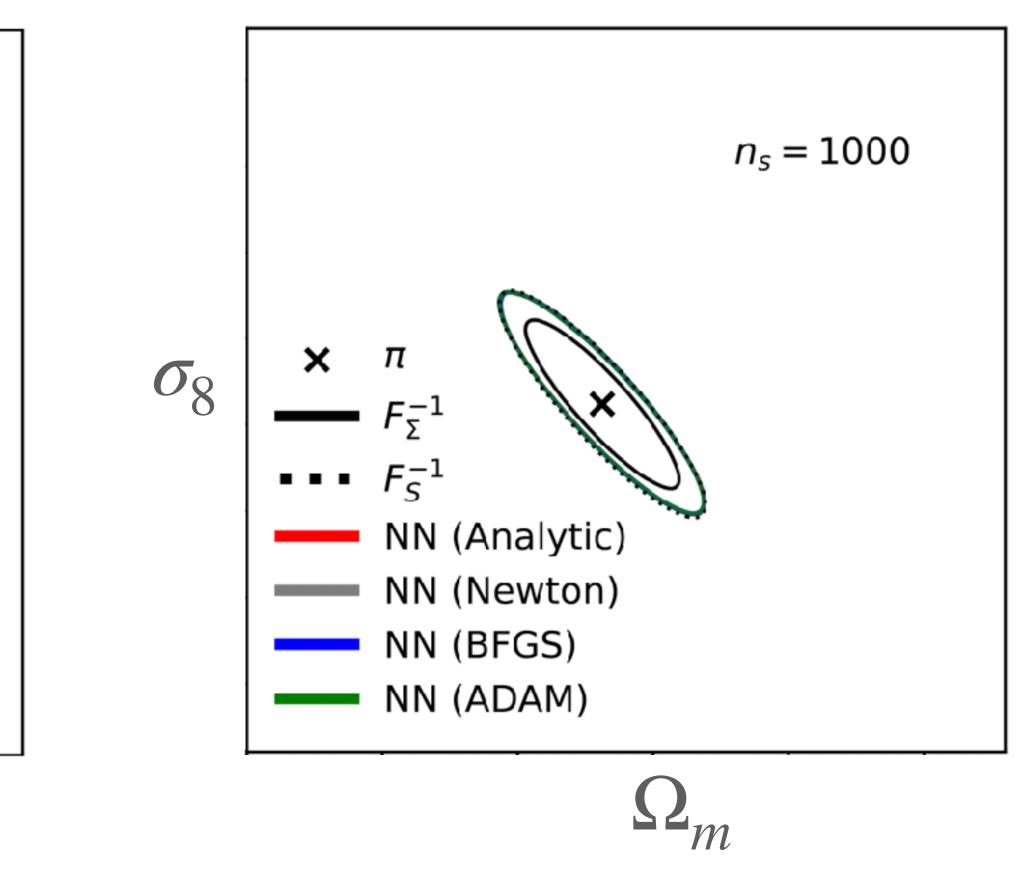
• Is there a Dodelson-like effect in the density estimation?

• In addition to the scatter from compression with $\hat{\Sigma} = S$?

Future: much ado about neural networks



- - calculation of summary scatter for non-linear model,
 - optimisation has a regularising effect.



• How does $\hat{\pi}[\hat{\xi}]$ from a neural network scatter on average for low n_s ?

Future: interpretable likelihoods from machines

- Current density estimation methods are not interpretable
 - What is the difference between $p_{\phi}(\xi \,|\, \pi)$ and a Gaussian linear model?
 - Can we fit a model for $\xi[\pi]$ and $p(\hat{\xi} | \xi[\pi])$?

- Solution may *not* lay in the machine learning literature... yet
 - 10 years of flows,
 - diffusion, FM, ... poorer density estimation.

